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Central Limit Theorems When Data Are Dependent: 
Addressing the Pedagogical Gaps 

 
 

ABSTRACT 

Although dependence in financial data is pervasive, standard doctoral-level econometrics 

texts do not make clear that the common central limit theorems (CLTs) contained therein fail 

when applied to dependent data. More advanced books that are clear in their CLT assumptions 

do not contain any worked examples of CLTs that apply to dependent data. We address these 

pedagogical gaps by discussing dependence in financial data and dependence assumptions in 

CLTs and by giving a worked example of the application of a CLT for dependent data to the case 

of the derivation of the asymptotic distribution of the sample variance of a Gaussian AR(1). We 

also provide code and the results for a Monte-Carlo simulation used to check the results of the 

derivation. 

 

INTRODUCTION 

Financial data exhibit dependence. This dependence invalidates the assumptions of 

common central limit theorems (CLTs). Although dependence in financial data has been a high-

profile research area for over 70 years, standard doctoral-level econometrics texts are not always 

clear about the dependence assumptions needed for common CLTs. More advanced 

econometrics books are clear about these assumptions but fail to include worked examples of 

CLTs that can be applied to dependent data. Our anecdotal observation is that these pedagogical 

gaps mean that doctoral students in finance and economics choose the wrong CLT when data are 

dependent.  
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In what follows, we address these gaps by discussing dependence in financial data and 

dependence assumptions in CLTs, giving a worked example of the application of a CLT for 

dependent data to the case of the derivation of the asymptotic distribution of the sample variance 

of a Gaussian AR(1), and presenting a Monte-Carlo simulation used to check the results of the 

derivation. Details of the derivations appear in Appendix A, and MATLAB code for the Monte-

Carlo simulation appears in Appendix B. 

 

DEPENDENCE IN FINANCIAL DATA 

There are at least three well-known explanations for why dependence remains in financial 

data, even though the profit-seeking motives of thousands of analysts and traders might naively 

be expected to drive dependence out of the data: microstructure effects, rational price formation 

that allows for dependence, and behavioral biases. First, microstructure explanations for 

dependence include robust findings such as thin trading induced index autocorrelation [Fisher, 

1966, p. 198; Campbell, Lo, and MacKinlay, 1997, p. 84], spurious cross-autocorrelations 

[Campbell, Lo, and MacKinlay, 1997, p. 129], genuine cross-autocorrelations [Chordia and 

Swaminathan, 2000], and bid-ask bounce induced autocorrelation [Roll, 1984; Anderson et al., 

2006]. Second, we may deduce from Lucas [1978], LeRoy [1973], and Lo and MacKinlay 

[1988] that, even if stock market prices satisfy the “efficient markets hypothesis,” rational prices 

need not follow random walks. For example, some residual predictability will remain in returns 

if investor risk aversion is high enough that strategies to exploit this predictability are considered 

by investors to be too risky to undertake. Third, behavioral biases like “exaggeration, 

oversimplification, or neglect” as identified by Graham and Dodd [1934, p. 585] are robust 

sources of predictability. Popular examples of these include DeBondt and Thaler [1985, 1987], 
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who attribute medium-term reversal to investor over-reaction to news, and Jegadeesh and Titman 

[1993], who attribute short-term price momentum to investor under-reaction to news. More 

recently, Frazzini [2006] documents return predictability driven by the “disposition effect” (i.e., 

investors holding losing positions, selling winning positions, and therefore under-reacting to 

news).  

Dependence in financial data causes problems for statistical tests. Time series correlation 

“…is known to pollute financial data…and to alter, often severely, the size and power of testing 

procedures when neglected” [Scaillet and Topaloglou, 2005, p. 1]. For example, Hong et al. 

[2007] acknowledge the impact of time series dependence in the form of both volatility 

clustering and weak autocorrelation for stock portfolio returns. They use a CLT for dependent 

data from White [1984] to derive a test statistic for asymmetry in the correlation between 

portfolio and market returns depending upon market direction. Cross-sectional correlation also 

distorts test statistics and the use of CLTs. For example, Bollerslev et al. [2007] discuss cross-

correlation in stock returns as their reason for abandoning CLTs altogether when trying to derive 

an asymptotic test statistic to detect whether intradaily jumps in an index are caused by co-jumps 

in individual index constituents. Instead they choose a bootstrapping technique. They argue that 

the form of the dependence is unlikely to satisfy the conditions of any CLT, even one for 

dependent data. Other authors assume independence in order to get a CLT they can use. For 

example, Carrera and Restout [2008, p. 8], who admit their “assumption of independence across 

individuals is quite strong but essential in order to apply the Lindberg-Levy central limit theorem 

that permits [us] to derive limiting distributions of tests.” 

Barbieri et al. [2008] discuss the importance of dependence in financial data. They 

discuss CLTs and use their discussion to motivate discussion of general test statistics that are 
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robust to dependence and other violations of common CLTs (e.g., infinite variance and non-

stationarity). Barbieri et al. [2009] discuss CLTs in finance and deviations from the assumptions 

of standard CLTs (e.g., time series dependence and time-varying variance). They even go so far 

as to suggest that inappropriate use of CLTs that are not robust to violations of assumptions may 

have led to risk-management practices (e.g., use of Value at Risk [VaR]) that failed to account 

for extreme tail events and indirectly led to the global recession that began in 2007. 

Brockett [1983] also discusses misuse of CLTs in risk management. This is, however, an 

example of the “large deviation” problem (rather than a central limit problem) discussed in Feller 

[1971, pp. 548–553]. Cummins [1991] provides an excellent explanation of Brockett’s work, and 

Lamm-Tennant et al. [1992] and Powers et al. [1998] both warn the reader about the problem.  

Carr and Wu [2003] are unusual in that they deliberately build a model of stock returns 

that violates the assumptions of a CLT. They do so because they observe patterns in option 

implied volatility smiles that are inconsistent with the CLT assumptions being satisfied. The 

assumption they violate is, however, finiteness of second moments rather than independence.  

Research interest in dependence in financial data is nothing new. There has been a 

sustained high level of research into dependence in financial data stretching, for example, from 

Cowles and Jones [1937] to Fama [1965], to Lo and MacKinlay [1988], to Egan [2008], to 

Bajgrowicz and Scaillet [2008], to Barbieri et al. [2008, 2009], and beyond.  

Given that dependence in financial data is widespread, causes many statistical problems, 

and is the topic of much research, careful pedagogy in the area of the application of CLTs to 

dependent data is required.  
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PEDAGOGICAL GAPS 

We have identified two pedagogical gaps in the area of the application of CLTs to 

dependent data. First, standard doctoral-level econometrics texts do not always make clear the 

assumptions required for common CLTs, and they may, by their very nature, fail to contain more 

advanced CLTs. For example, looking at the Lindberg-Levy and Lindberg-Feller CLTs in 

Greene [2008], it is not at all clear that they do not apply to dependent data [see Theorems 

D.18A and D.19A in Greene, 2008, pp. 1054–1055]. Only very careful reading of earlier 

material in the book, combined with considerable inference, reveals the full assumptions of these 

theorems. The assumptions for these two theorems are, however, clearly stated in more advanced 

books [see DasGupta, 2008, p. 63; Davidson, 1997, Theorems 23.3 and 23.6; Feller, 1968, p. 

244; Feller, 1971, p. 262; and White, 1984 and 2001, Theorems 5.2 and 5.6]. Second, even 

where the assumptions for the simple CLTs do appear clearly and where the more advanced 

CLTs for dependent data are present, we have been unable to find any worked example showing 

the application of the more advanced CLTs to concrete problems. For example, although Hong et 

al. [2007] use a CLT for dependent data from White [1984], they gloss over the implementation 

details because theirs is a research paper, not a pedagogical one. 

These pedagogical gaps make the area of the application of advanced CLTs to cases of 

dependent data poorly accessible to many doctoral students. We believe that the best way to 

address this problem is by providing a worked example using a CLT for dependent data in a 

simple case. So, in what follows, we derive the asymptotic distribution of the sample variance of 

a Gaussian AR(1) process using a CLT from White [1984, 2001]. We also derive the asymptotic 
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distribution of the sample mean for the process. This latter derivation does not need a CLT, but 

the result is needed for the asymptotic distribution of the sample variance. 

 

WORKED EXAMPLE OF A CLT FOR DEPENDENT DATA 

We assume that the random variable tX  follows a Gaussian AR(1) process:  

 ,)(= 1 ttt XX εμρμ +−+ −  (1) 

where )(0, 2
εσε NIIDt ∼ , “IID” means independent and identically distributed, and “ ),( baN ” 

denotes a Normal distribution with mean a  and variance b . The only other assumption we make 

in the paper is that 1|<| ρ  (so that tX  is stationary). 

The functional form of (1) is the simplest example of a non-IID data-generating process. 

By restricting our attention to an AR(1), we minimize the complexity of the dependence in the 

data while still being able to demonstrate the use of a CLT for dependent data. Our asymptotic 

results may be derived without our assumption of Gaussian increments [e.g., using theorems in 

Fuller, 1996, Section 6.3; or Brockwell and Davis, 1991, Section 6.4]. The Gaussian 

specification of the problem allows, however, for a cleaner pedagogical illustration using an 

elegant CLT from White [1984, 2001]. It also allows for a cleaner specification of the Monte-

Carlo simulation we perform. 

The Gaussian AR(1) process tX  is stationary and ergodic by construction (see the proof 

of Lemma 4 in Appendix A). Stationarity and ergodicity are strictly weaker than the IID 

assumption of the classical theorems in probability theory (e.g., the Lindberg-Levy and 

Lindberg-Feller CLTs). Thus, these theorems do not apply. Stationarity and ergodicity are 

sufficient, however, for us to derive asymptotic results analogous to those available in the case 

where tX  is IID. 
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Let μ̂ , and 2σ̂  denote the usual sample mean and variance of the tX 's,  

 .)ˆ(
1

1ˆ    ,1ˆ 2

1=

2

1=
μσμ −
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≡≡ ∑∑ t
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t
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n
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The following two lemmas and theorem give the asymptotic distribution of the sample mean μ̂  

of the Gaussian AR(1) process. 

Lemma 1  We have the following exact distributional result for a Gaussian AR(1):  

 .
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Proof: 

 See Appendix A.  

Lemma 2  The following probability limit result holds for the second term on the left-

hand side of (3):  

 0.=
1

0
⎥
⎦

⎤
⎢
⎣

⎡ −
⋅

− n
XXplim n

ρ
ρ  (4) 

Proof: 

See Appendix A. 

 

Theorem 1 We have the following asymptotic distributional result for the sample mean 

of a Gaussian AR(1) process:1   

 ,
1

)(10,)ˆ(
2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
+

−
ρ
ρσμμ Nn

A
∼  (5) 

where 2σ  is the variance of tX .  
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Proof:  

Apply Lemma 2 to (3) in Lemma 1 to deduce the asymptotic Normality of )ˆ( μμ −n . 

Then use the stationarity of tX  (recall 1|<| ρ ) to replace 2
εσ  by )(1 22 ρσ − , thus completing the 

proof. This proof does not require a CLT, but one is needed in the proof of Lemma 4. See van 

Belle [2002, p. 8] for a related result and DasGupta [2008, p. 127] for a related exercise.  

The following two lemmas and theorem give the asymptotic distribution of the sample 

variance 2σ̂  of the Gaussian AR(1) process. 

 

Lemma 3 We may rewrite the term )ˆ( 22 σσ −n  as follows:  

 ,
ˆˆ1)(=)ˆ(

2
222222
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where .)(1 2
1=

2 μ−≡ ∑ t
n

t
X

n
s   

Proof: 

Direct algebraic manipulation and cancellation of terms.            

 

Lemma 4 The following asymptotic distributional and probability limit results hold for 

the three terms on the right-hand side of (6):  
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 Proof:  

This is the most difficult derivation. It requires a CLT for dependent data. See Appendix 

A. 

 

Theorem 2 We have the following asymptotic distributional result for the sample 

variance of a Gaussian AR(1) process:  

 .
)(1

)(120,)ˆ( 2

24
22

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
+

−
ρ
ρσσσ Nn

A
∼  (10) 

  

Proof:  

Apply the three results in Lemma 4 to the three right-hand side terms, respectively, 

appearing in Lemma 3, and deduce the result directly.             

 

The asymptotic results for μ̂  in (5) of Theorem 1 and for 2σ̂  in (10) of Theorem 2 have 

elegant interpretations. The higher is the degree of positive autocorrelation ρ , the larger is the 

standard error of both μ̂  and 2σ̂ —higher positive ρ  means fewer effectively independent 

observations of tX . Similarly, the higher is the degree of negative autocorrelation, then the 

larger is the standard error of 2σ̂ . We leave the reader with a small challenge: Deduce the 

qualitative explanation for why larger negative autocorrelation reduces the standard error of μ̂ . 

 

MONTE-CARLO SIMULATION 

We have found that a Monte-Carlo simulation of the process and of the asymptotic 

distributions of the sample estimators aids doctoral student understanding significantly. We 
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therefore present MATLAB code for a Monte-Carlo simulation, and we plot the resulting 

theoretical and simulated empirical asymptotic distributions. 

In the case of the Gaussian AR(1), doctoral students who incorrectly use CLTs for 

independent data invariably conclude that the variance on the left-hand side of (10) is 42σ  rather 

than 
)(1

)(12
2

24

ρ
ρσ

−
+ . You may then ask your students to perform a Monte-Carlo simulation of the 

Gaussian AR(1) process with 0≠ρ , so that they can demonstrate for themselves that they have 

statistically significantly underestimated the true standard error. 

A portion of our MATLAB code for the Monte-Carlo simulation appears in Appendix B. 

We choose the values 0=μ , 0.90=ρ , and 0.50=εσ . Figures 1 and 2 compare the realized 

empirical distribution to the theoretical results for both the asymptotic distribution of 2σ̂  and the 

actual large sample distribution of 2σ̂  (they are scaled versions of each other because we use the 

same random seed). We do not show the analogous results for μ̂ . 

Two pedagogical purposes are served by the Monte-Carlo simulation. First, our 

experience is that when a doctoral student simulates the process, repeatedly collects the 

asymptotic sample statistics, and then forms a distribution, he or she only then attains a clear 

concrete notion of what an asymptotic distribution actually is. Second, by comparing the realized 

asymptotic distribution to the derived theoretical one, the students understand the power of a 

Monte-Carlo in attempting to confirm or deny the consistency of a difficult analytical result—

each of Figures 1 and 2 clearly distinguishes between the competing asymptotic distributions.    

 

[Insert Figures 1 and 2 about here]   
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CONCLUSIONS 

In our experience, finance and economics doctoral students have limited exposure to the 

use of central limit theorems for dependent data. Given that dependence in financial data is 

widespread, causes many statistical problems, and is the topic of much research, careful 

pedagogy in the area of the application of CLTs to dependent data is required. We identify, 

however, two pedagogical gaps in the area. We fill these gaps by discussing dependence in 

financial data and dependence assumptions for CLTs and by showing how to use a CLT for 

dependent data to derive the asymptotic distribution of the sample estimator of the variance of a 

Gaussian AR(1) process. We also present a Monte-Carlo simulation to aid student understanding 

of asymptotic distributions and to illustrate the use of a Monte-Carlo in attempting to confirm or 

deny an analytical result. 

 

 

 

ENDNOTES 

1. If a sequence nb  of random variables converges in distribution to a random variable Z  

(often written “ Zb
d

n → ”), then nb  is said to be asymptotically distributed as ZF , where ZF  is the 

distribution of Z . This is denoted here by “ Z

A

n Fb ∼ ” [as in White, 2001, p. 66].  

 

2. Note that White's “stationarity” is strict stationarity. That is, ∞
1=}{ ttZ and ∞

− 1=}{ tktZ  have 

the same joint distribution for every 0>k  [see White, 2001, p. 43; and Davidson 1997, p. 193]. 
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APPENDIX A. DERIVATIONS 

Proof of Lemma 1: Rewrite the left-hand side of (3) in terms of the residual tε  (the 

exact distribution of which is known).  
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where the last line uses the definition of tε  implicit within (1). We may now use 

)(0, 2
εσε NIIDt ∼  to deduce  
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thus proving the lemma.            
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Proof of Lemma 2: 

 Let “ ),(⋅var ” “ ),,( ⋅⋅cov ” and “ ),,( ⋅⋅corr ” denote the unconditional variance, covariance, 

and correlation operators, respectively. Let 2σ  denote )( tXvar . The term 

]))/[(1( 0 nXX n ρρ −−  is shown to have variance of order )(1/nO  as follows:  
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 (11) 

This derivation assumes 1|<| ρ  (so that stationarity of tX  gives 2
0 =)(=)( σXvarXvar n ). We 

also use 1),( 0 −≥XXcorr n  at the last step. 

Tchebychev's Inequality [Greene 2008, p. 1040] says that for random variable V  and 

small 0,>δ  

 .)()|>)((| 2δ
δ VvarVEVP ≤−  

We may apply Tchebychev's Inequality to ]))/[(1( 0 nXXV nn ρρ −−≡ , and use (11) to find  
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Thus, for any 0>δ , we have 0=)|>(|lim δnn VP∞→ . That is, 0=nVplim , thus proving the 

lemma.            

 

Proof of Lemma 4: We demonstrate each of Equations (7), (8), and (9) in turn. We begin 

with the proof of the asymptotic result in (7):  

 ,
)(1

)(120,)( 2

24
22
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⎛
−
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−
ρ
ρσσ Nsn

A
∼  

where 2
1=

2 )(1 μ−≡ ∑ t
n

t
X

n
s , and )(=2

tXvarσ . To derive this result, we apply the following 

CLT for non-IID data adapted directly from White [1984]. 

 

Theorem [from White 1984, Theorem 5.15, p. 118] 

  Let tℑ  be the sigma-algebra generated by the entire current and past history of a 

stochastic variable tZ ; let jt ,ℜ  be the revision made in forecasting tZ  when information 

becomes available at time jt − , that is, )|()|( 1, −−− ℑ−ℑ≡ℜ jttjttjt ZEZE ; let nZ  denote the 

sample mean of nZZ ,,1 … ; and let )(2
nn Znvar≡σ . Then, if the sequence }{ tZ  satisfies the 

following conditions: 1. }{ tZ  is stationary;2  2. }{ tZ  is ergodic; 3. ∞<)( 2
tZE ; 4. 

0)|(
..

0

mq

mZE →ℑ−  as ∞→m ; and 5. ( )[ ] ∞ℜ∑∞ <1/2
0,0= jj

var , we obtain the results 22 σσ →n , as 

∞→n , and if 0>2σ , then (0,1)NZn A
n ∼

σ
. 

We apply the theorem to .)( 22 σμ −−≡ tt XZ  With this definition of tZ , we obtain 

,=)(1/= 22
1=

σ−∑ sZnZ t
n

tn  and, thus, ).(= 22 σ−snZn n  However, before we can apply the 
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theorem, we must check that its five conditions are satisfied, and we must calculate 

)(lim=lim 2
nnnn Znvar∞→∞→ σ . We begin by checking the five conditions.   

 

Condition 1: We have assumed 1|<| ρ . Thus, our Gaussian AR(1) process tX  is stationary. 

Stationarity of tX  yields stationarity of tZ  immediately (by definition of tZ ). 

 

Condition 2: White [2001, p. 48] uses Ibragimov and Linnik [1971, pp. 312–313] to deduce that 

a Gaussian AR(1) with 1|<| ρ  is strong mixing. White [2001, p. 48] then uses Rosenblatt [1978] 

to state that strong mixing plus stationarity (recall 1|<| ρ ) implies ergodicity. It follows that tX  

is ergodic. This yields ergodicity of tZ  immediately (by definition of tZ ). 

 

Condition 3: We note first that since tε  is Gaussian, then so too is tX  [Hamilton 1994, p. 118]. 

It is well known that if ),( 2σμNX t ∼ , then 44 3=])[( σμ−tXE . It follows that  

 ]))[((=)( 2222 σμ −−tt XEZE  

 ])(2)[(= 4224 σμσμ +−−− tt XXE  

 .<2=23= 4444 ∞+− σσσσ  (12) 

 

Condition 4: To show that 0)|(
..

0

mq

mZE →ℑ−  as ∞→m , we must show that 0)|(
..mq

mttZE →ℑ −  as 

∞→m  in the special case 0=t . In fact, we can prove convergence in quadratic mean for any t  

if we can show 0))]|(([ 2 →ℑ −mttZEE  as ∞→m  [see White, 1984, p. 117]. To 

derive )|( mttZE −ℑ , we first consider the term 22 )(= μσ −+ tt XZ  as follows:  
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With 22 )(= μσ −+ tt XZ , it follows from (13) that  
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If we now cancel 2σ  from both sides of (14), we find  

 .=])[(=)|( 2222
mt

m
mt

m
mtt ZXZE −−− −−ℑ ρσμρ  (15) 

It follows that 4424222 2=)(=)]([=))]|(([ σρρρ m
mt

m
mt

m
mtt ZEZEZEE −−−ℑ  (using (12) and 

stationarity of tZ ). With 1|<| ρ , we deduce that 0))]|(([ 2 →ℑ −mttZEE  as ∞→m , and, thus, that 

0)|(
..mq

mttZE →ℑ −  as ∞→m  [using White, 1984, p. 117], as required. 

 

Condition 5: Applying (15) to the definition of jt ,ℜ  yields  

 )|()|( 1, −−− ℑ−ℑ≡ℜ jttjttjt ZEZE  
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 .= 1)(
1)2(2

+−
+

− − jt
j

jt
j ZZ ρρ  (16) 

By definition, 0,=)( tZE  so 0=)( , jtE ℜ , and, thus, )(=)( 2
,, jtjt Evar ℜℜ . Manipulating (16), we 

get  

 )(=)( 2
,, jtjt Evar ℜℜ  
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j
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j ZZE ρρ  
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2441)4(4
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++ −+ tt
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where we used (12) and the fact that 0=)(=)( 1)( +−− jtjt ZEZE . We also used stationarity of tZ  to 

rewrite )( 1)( +−− jtjt ZZE  as )( 1−tt ZZE . 

The term )( 1−tt ZZE  in (17) may be expanded as follows:  

 )]))(()[((=)( 22
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Plugging this expression for )( 1−tt ZZE  into (17) gives  
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where )( μ−≡ tt XY . The term )( 2
1

2
−tt YYE  is a special case of a more general term )( 22

dtt YYE − , 

which we now evaluate (we need the general term later in the proof). From the definition of the 

Gaussian AR(1) (1) and from (13), we deduce that kt
kd

kdt
d

t YY −
−

− ∑+ ερρ 1

0=
=  and that tY  is 

Gaussian with zero-mean. It follows that  
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where we used independence of dtY −  and kt−ε  for dk <  to separate expectations in the cross-

product term. We also used the mean-zero Normality of dtY −  to write 0=)( 3
dtYE − , and 

44 3=)( σdtYE − . If we now set 1=d  in (19) and plug this into (18), we obtain  
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∞
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This latter result holds in the special case 0=t , so the fifth and final prerequisite for applying 

White's Theorem to tZ  is satisfied.  

 We must now find )(lim=lim 22
nnnn Znvar∞→∞→≡ σσ . Recall that we have 
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With 2σ  a constant, we know that )(=)( 2snvarZnvar n . It is easier to work with )( 2nsvar , so 

we do that and then adjust the result.  
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where we used (19) to replace ( )22
dtt YYE − . If we divide (21) by 4σ  and combine the final two 

terms, we get  
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It is easily shown that nnntn
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It follows immediately that 
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→snvar  as ∞→n . Using this result in the last 

part of White's theorem yields  
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thus proving (7)—the first of the three parts of Lemma 4. 

To demonstrate (8)—the second of the three parts of Lemma 4—we need the probability 

limit of ( )( )22 ˆ1)/( σnnsn −− . Direct algebraic manipulation yields  
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where
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nQn  is asymptotically standard Normal (a consequence of Theorem 1). We 

may now apply a result analogous to Slutsky's Theorem for probability limits [see Greene, 2008, 

p. 1045] to deduce that 2
1

2 χ
A

nQ ∼  (that is, 2
nQ  is asymptotically chi-square with one degree of 

freedom). Thus, 2
nQ  is of bounded variance. It follows that one application of Tchebychev's 

Inequality to (23) produces the result:  
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thus proving (8)—the second of the three parts of Lemma 4. 

To demonstrate (9)—the third and final part of Lemma 4—we need the probability limit 

of )./ˆ( 2 nσ  Algebraic manipulation gives  
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The variance of 2s  goes to zero as ∞→n  (a consequence of (22)). The variance of 2)ˆ( μμ −  

goes to zero as ∞→n  (a consequence of 2
1

2 χ
A

nQ ∼ , from above). In (24), the coefficients 

11)/( →−nn  as ∞→n . It follows that 0)ˆ( 2 →σvar  with n . An application of Tchebychev's 

Inequality yields immediately  
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thus proving the third and final part of Lemma 4.            
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APPENDIX B. MATLAB MONTE-CARLO CODE 

clear;  

rho=0.90;sigmae=0.50;mu=0;sigma=sigmae/sqrt(1-rho^2);  

N=500000;NUMBREPS=10000; rseed=20081103; randn('seed',rseed);  

collect=[ ];  

for J=1:NUMBREPS  

Y=[]; epsilon=randn(N,1); xpf=epsilon*sigmae;  

bpf=1; apf=[1 -rho]; Y=filter(bpf,apf,xpf); 

collect=[collect' [mean(Y) var(Y)]']';  

end 

asymeanv=0; asyvarv=2*(sigma^4)*(1+rho^2)/(1-rho^2); 

asymeanv1=0; asyvarv1=2*(sigma^4); v=sqrt(N)*(collect(:,2)-sigma^2);  

hpdf=[];mynormpdf=[];[M,X]=hist(v,250);M=M';X=X';dx=min(diff(X)); 

hpdf=M/(sum(M)*dx); 

mynormpdf=(1/(sqrt(2*pi)*sqrt(asyvarv))).*exp( 

-0.5*((X-asymeanv)/sqrt(asyvarv)).^ 2); 

mynormpdf1=(1/(sqrt(2*pi)*sqrt(asyvarv1))).*exp( 

-0.5*((X-asymeanv1)/sqrt(asyvarv1)).^2); 

plot(X,[hpdf mynormpdf mynormpdf1],'k') 

xlabel('Asymptotic Sample Variance of the Gaussian AR(1)'); 

ylabel('Frequency'); 
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Figure 1. Histogram of Simulated Empirical PDF of )ˆ( 22 σσ −n  

  

 

  We use MATLAB to simulate a time series of 500,000 observations of the Gaussian 

AR(1) using 0.90=ρ , 0.50=εσ , and 0=μ . We then record the sample variance 2σ̂  of the 

process. We repeat this 10,000 times and plot (the uneven line) the realized density 

of )ˆ( 22 σσ −n . We overlay on the plot the correct theoretical density ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
+

)(1
)(120, 2

24

ρ
ρσN  and 

the most common incorrect student-derived theoretical density ( )40,2σN . The correct density is 

the one close to the empirical density; the incorrect density is more peaked.    
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Figure 2. Histogram of Simulated Empirical PDF of 2σ̂  

  

 

  We use MATLAB to simulate a time series of 500,000 observations of the Gaussian 

AR(1) using 0.90=ρ , 0.50=εσ , and 0=μ . We then record the sample variance 2σ̂  of the 

process. We repeat this 10,000 times and plot (the uneven line) the realized density of 2σ̂ . We 

overlay on the plot the correct theoretical density ⎟⎟
⎠

⎞
⎜⎜
⎝
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N  and the most common 

incorrect student-derived theoretical density ⎟⎟
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⎞
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⎛
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N
4

2 2, σσ . The correct density is the one close to 

the empirical density; the incorrect density is more peaked.   


