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Abstract

The theory of risk and return in the stock market is perhaps the best understood casc
of economic decision under uncertainty. The prominent developments in this field arc
the procedure for portfolio selection, the Capital Asset Pricing Model (CAPM), and the
Arbitrage Pricing Theory (APT). This dissertation revisits all three of these important
themes, with special attention paid to developing new angles of attack.

The first essay proposes an original solution to a troublesome statistical problem often
encoutered when implementing portfolio selection: the estimation of the inverse of the
variance-covariance matrix with less observations than variables; an empirical application
of this new statistical technique challenges recent claims of flatness in the relationship
between expected stock returns and CAPM betas. The second chapter is a theoretical essay
introducing a strengthened version of the APT that expresses rigorously the APT's ideas
when the number of stocks is finite. This theoretical framework is used in the third essay to
compute an upper bound on deviations from beta pricing, both for the CAPM and the APT,
empirical results show that this bound is rather loose, indicating that betas can easily fail
to characterize expected returns to any acceptable degree of accuracy; furthermore, when
estimation error on risk premia is acknowledged, the optimal number of factors in the APT
is very small (three or less), and the error is roughly as large in the APT’s beta pricing
equation as in the CAPM’s.

Thesis Supervisor: Andrew W. Lo
Title: Harris & Harris Group Professor of Finance
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Chapter 1

Portfolio Selection: Improved

Covariance Matrix Estimation

This chapter studies the estimation of the covariance matrix of returns on all stocks traded
in the stock market, for portfolio selection. The number of observations is assumed to go to
infinity, but the standard asymptotic assumption that keeps the number of variables bounded
is lifted. In practice, this is appropriate when the number of traded stocks is at least of the
same order of magnitude as the number of time periods, which is the usual case.

The first part characterizes intuitively and analytically the behavior of the sample covari-
ance matrix in this case. Some of this work is potentially applicable to tests for the number
of factors in the Arbitrage Pricing Theory (APT). The second part develops a simple and
versatile estimator that has lower mean squared error than the sample covariance matrix.
This estimator provides attractive answers to some fundamental questions in multivariate
statistics. In the third and last part, Monte-Carlo simulations and historical data indicate that
the new estimator improves over existing ones for portfolio selection: it yields portfolios
with significantly lower risk than was previously possible. One of the empirical applications
can be interpreted as a test of the Capital Asset Pricing Model (CAPM) with higher power
than existing tests. It finds a significant and robust positive relationship between returns

and betas, in contrast with less powerful tests in the literature.
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1.1 Introduction

1.1.1 Overview

The objective of this study is to estimate the covariance matrix of returns on all stocks
traded in the stock market. This is important because the covariance matrix is a necessary
input to Markowitz (1952) portfolio selection, a central method in stock market finance.

Our original approach is to assume that the number of observations T' goes to infinity,
as in standard asymptotics, but relax the standard asymptotic assumption that the number
of variables N remains bounded by a constant: we only assume that /V is bounded by a
constant times 7T'. It is a more realistic approximation of actual stock returns data, because
typically the number of traded stocks NV is at least of the same order of magnitude as the
number of time periods 7.

In the first part, we show that the sample covariance matrix is no longer consistent in this
framework. Its mean squared error is of order N/T. For example, the sample covariance
matrix of N = 1,000 stocks based on T' = 2,000 observations is approximately as
erroneous as the variance of the return on N = | stock estimated from 7" = 2 observations.
Not only is the error substantial, but its nature is particularly damaging to portfolio selection:
it causes the sample covariance matrix to be near-singular or singular. When the sample
covariance matrix is near-singular, inverting it amplifies error and yields grossly inaccurate
results for portfolio selection. This is the case if N is of the same order of magnitude as T'.
When the sample covariance matrix is singular, it cannot be inverted and cannot be used
for portfolio selection at all. This is the case if NV exceeds 7.

We also review the spectral theory of large-dimensional random matrices. This theory
gives the relationship between the eigenvalues of true and sample covariance matrices as a
function of the ratio N/T, when T goes to infinity. It is the fact that the smallest sample
covariance matrix eigenvalues are biased down towards zero that causes the singularity
problem. This theory can potentially be used to test hypotheses about the eigenvalues of the
covariance matrix of stock returns, such as the ones made by the Arbitrage Pricing Theory
(APT).

In the second part, we improve over the sample covariance matrix. Some authors

12



impose parsimonious structure (e.g. all pairs of stocks have the same correlation coefficient)
to obtain an estimator with fewer free parameters. Better yet, Frost and Savarino (1986)
combine such a “structured” estimator with the sample covariance matrix. We focus on
weighted averages of a structured estimator with the sample covariance matrix and ask:
what are the optimal weights? In our asymptotic framework, simple estimators of the
weights minimizing mean squared error are consistent. We thus show how to improve
both on any given structured estimator and on the sample covariance matrix by combining
them in an asymptotically optimal way. Not only does it reduce mean squared error, but it
generally escapes the singularity problem.

This method can be interpreted in Bayesian terms. The structured estimator can be called
the prior, and its combination with the sample covariance matrix the posterior. Fundamental
Bayesian questions have always been: Where does the prior come from? How confident are
we in the prior? In finite sample, it is very hard to answer these questions satisfactorily. By
contrast, in our asymptotic framework, the prior can be taken as any structured estimator,
and the degree of confidence in the prior can be estimated consistently.

In the third part, we show that the improved estimator performs well in practice. In
Monte-Carlo simulations, it has lower mean squared error than the sample covariance
matrix, even in very small sample. Historical simulations confirm that, for a given set
of constraints, our estimator yields portfolios with significantly lower risk than existing
estimators.

One of our historical simulations is the first predictive Generalized Least Squares (GLS)
cross-sectional regression of stock returns on betas and size. Similar regressions have been
interpreted as tests of the CAPM. Thanks to our improved covariance matrix estimator,
our GLS-based tests have more power than the tests in the literature, which are based on
Ordinary Least Squares (OLS). By contrast with OLS tests, our GLS tests find a significant

and robust positive relationship between returns and betas.

In this section, we present an overview of the chapter and contrast it with the existing
literature. In Section 1.2, we study the behavior of the sample covariance matrix when

the number of variables is allowed to grow large. We develop a family of estimators
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that improve over the sample covariance matrix in Section 1.3. In Section 1.4, we sce
how these estimators perform for portfolio selection. Section 1.5 concludes. Appendix A
contains details about the spectral theory of large-dimensional random matrices. Appendix
B contains formulas for the more complicated versions of our estimator. Proofs are in

Appendix C.

1.1.2 Comparison with Existing Literature

Jobson and Korkie (1980) show that using the sample covariance matrix for portfolio
selection can cause severe problems. In some cases, it is better to use the identity matrix
instead. Our main intuition is that a well-chosen lincar combination of the sampie covariance
matrix with the identity can work even better than either. Our main contribution is to show
how to choose this linear combination well.

Bawa, Brown and Klein (1979) argue that estimation risk coming from sample co-
variance matrix error is of the same nature as investment risk coming from stock return
volatility. Their idea is of a Bayesian nature. One of their recommendations is to combine
the sample covariance matrix with an “informative™ prior. The more confident we are in
the prior, the heavier it should weigh in the combination. They do not show how to obtain
the prior and the degree of confidence in it. This is what we do.

Our work is closest in spirit to Frost and Savarino’s (1986). The difference is that they
work in finite sample, while we work asymptotically. In finite sample, they have to ignore
dependence between the prior and the sample covariance matrix, assume normality, and
require that observations outnumber variables. Their formula is not explicit and is costly to
compute for large universes of stocks. Asymptotically, we avoid all these problems. The
price to pay is that peak performance only kicks in when N and T are large (larger than,
say, 30), but this is almost always the case in practice.

Kandel and Stambaugh (1994) analyze cross-sectional regressions of stock returns on
betas. The CAPM implies a positive slope. A problem arises because the market, with
respect to which betas are measured, is only known approximately (Roll, 1977). Then the

regression method matters. With Ordinary Least Squares (OLS), the regression slope can be

14



anything, even if the CAPM holds. OLS uses the identity in place of the covariance matrix
of stock return residuals. With Generalized Least Squares (GLS), however, the estimated
regression slope must be close to the one implied by the CAPM, if the CAPM holds and
the market proxy is close to the true market. GLS require an estimator of the covariance
matrix of residuals.! Where to find it? Usually, the sample covariance matrix is out of the
question because it is near-singular or singular. We show that a lincar combination of the
identity and the sample covariance matrix can be used to run GLS regressions.

Brown (1989) finds that APT tests based on sample covariance matrix cigenvalues
are extremely sensitive to the relative magnitudes of the number of time periods T and the
number of stocks N. His results are obtained by Monte-Carlo simulations in a stylized case.
We review an equation that gives the distribution of sample eigenvalues as a function of the
distribution of true eigenvalues and the ratio N/T, when T goes to infinity. Potentially, it
could be used to correct APT tests for the effect noticed by Brown.

To the best of our knowledge, the only published results on the sample covariance
matrix when N goes to infinity with T characterize eigenvalues. This literature is part of
the spectral theory of large-dimensional random matrices. Mar¢enko and Pastur (1967)
first obtained its central equation, which is the one that we alluded to in the previous
paragraph. The most recent and general result is by Silverstein (1994). We could only find
two statistical applications in this literature: Wachter (1976) and Silverstein and Combettes
(1992). Both are restricted to special cases, and study only eigenvalues. By contrast, we

work in the general case, and are interested in the whole sample covariance matrix.

1.2 Sample Covariance Matrix

We analyze the behavior of the sample covariance matrix when the number of variables is

large, the typical case for portfolio selection with stocks.

'The term GLS sometimes means using the true covariance matrix; here, just an estimator,

15



1.2.1 Model

Consider a very simple situation where we relax the standard asymptotic assumption that

keeps the number of variables fixed.

Assumption 1 Let T = 1,2,... index a sequence of statistical models. For every T,
X7t is an Ny x T matrix of T independent and identically distributed (iid) observations
on a system of Nr random variables with mean zero and Ny x Ny covariance matrix
Yr = E[(1/T)XrX%), where E[:| denotes expectation and prime denotes transposition.
The sample covariance matrix is r = (1/T)X1X}.. Assume that there exists a constant

A independent of T such that Ny < A T.

All the quantities in this chapter depend on T' unless otherwise specified. For fluidity we
omit the subscript 7. Assumption 1 prevents the number of variables N from growing
infinitely faster than the number of observations 7.

The assumption that the random variables have mean zero is not restrictive because, in
practice, we can always subtract some estimator of mean returns. How to estimate mean
returns is strictly outside the scope of this chapter.

Decompose the covariance matrix into eigenvectors and eigenvalues: £ = UAU',
where U is a rotation matrix (/'U = UU’ = I the identity matrix) whose columns are the
eigenvectors of X, and A a diagonal matrix whose diagonal elements are the eigenvalues of
Y. Define Y = U'X, an N x T matrix of T iid observations on a system of /N uncorrelated
random variables that spans the same space as the original system.

We must impose some cross-sectional restrictions in order to obtain results when we

allow N to grow without bounds.

Assumption 2 Let (yy,...,yn1) denote the first column of the matrix Y. The average

eighth moment is bounded in the following sense: there exists a constant I3 independent of

T such that E[(1/N) =N 48] < B.

Assumption 3 Cov[yi1y;1, ykiyn] = O when the set {i, j} does not intersect with the set

{k,1}.
Assumptions 1-3 are implicit throughout the remainder of the chapter.
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1.2.2 Norm

The originality of this framework is that the dimension N of the covariance matrix can
change as T' goes to infinity, and can even go to infinity itself: the space where the
covariance matrix lives is changing. This makes the definition of a norm on covariance
matrices delicate, but not impossible.

Two solutions come to mind: either define a norm on an infinite-dimensional space
into which every finite-dimensional space can be embedded, or define a sequence of norms
directly on the finite-dimensional spaces. Since it is not exactly clear how to implement the
first solution, I opt for the second one.

The sequence of norms (one norm corresponding to each dimension V) is built around

the Frobenius norm, which is often used in linear algebra.

Definition 1 The norm of the N x N symmetric matrix S with entries (s;)); =1, .~ and

eigenvalues (1;);=),... v is defined by:

N N

N
ISIP = cntr (S*) =en 3N sf =en 312, (.1
=1

i=1j=1

where tr denotes the trace and cy is a scalar coefficient. This norm is a quadratic form on
the linear space of N x N symmetric matrices. Its associated inner product is: Sy o S> =

cntr(S1S,), where Sy and Sy are N > N symmetric matrices.

It is attractive for the squared norm of a matrix to accumulate the squares of individual
entries. The coefficient cy controls the asymptotic behavior of the sequence of norms.
Rigorously speaking, the symbol for the norm || - || should be bearing the subscript V.

In order to complete the construction of the sequence of norms, we must choose what
asymptotic properties we want to impose on it, and determine the sequence of coefficients
cy accordingly. Remember that an N-dimensional matrix represents a lincar operator on
the space of N-dimensional vectors. A desirable property is that the norm of familiar lincar
operators remains well-behaved as N goes to infinity.

The standard definition of the Frobenius norm uses cy = 1. This may be appropriate

for the standard case where the dimension N is fixed, but it would cause severe paradoxes
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as N goes to infinity. For example, it would make the norm of the identity matrix go to
infinity with N. This is not acceptable because, as a linear operator, the identity leaves
vectors unchanged, and this operation is too mild to deserve an infinite norm.

The same paradox can be rewritten in terms of the distance between two matrices, which
is equal to the norm of their difference. This is advantageous because || - || is only used
below as a distance, not a norm.

The problem with ¢y = 1 is that the distance between tw.) sequence of matrices could
increase just because their dimension increases. All other things equal, distances would be
greater, the greater the dimension. In a general sense, distances would be larger between
two high-dimensional matrices than between two low-dimensional ones. To present an
analogy, it would be as ill-advised as measuring in the same unit the distance between two
cities and the distance between two galaxies.

This paradox is resolved by defining a relative distance. The distance between two
N-dimensional matrices is divided by the distance between two benchmark matrices of
the same dimension V. Relative distance corrects for the potentially disturbing impact of
dimension. The benchmark must be chosen carefully. I take the benchmark as the distance

from the null matrix to the identity. This convention determines ¢y uniquely.
Definition 2 The scalar coefficient not specified by Definition 1 is: ¢y = 1/.N.

Any choice of ¢y such that the distance from the identity to the null matrix remains
bounded away from zero and infinity would induce a norm equivalent to Definition 2's.
This is a very large class, and arguably it contains any distance that would make sense in
this context. Equivalence means that the notions of convergence and consistency are blind
to the particular distance in the class. We can thus be confident that Definitions 1-2 capture
an intuitively satisfying notion of distancce.

A simple example illustrates the asymptotic behavior of the distance defined above. Let
M, denote the N x N matrix with one in its top left entry and zeros everywhere clse. Let
M, denote the N x N matrix with zeros everywhere (i.e. the null matrix). A/, and A/
differ in a way that is independent of /NV: the top left entry is not the same. Yet the squared

distance || M, — My||* = 1/N depends on N.
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This apparently surprising remark has an intuitive explanation. M, and Al disagree on
the first dimension, but they agree on the N — | others. The importance of their disagreement
is relative to the extent of their agreement. If N = 1, then A, and A[, have nothing in
common, and their distance is 1. If N — oo, then A, and Al have almost everything
in common, and their distance goes to 0. Thus, disagreeing on one entry can either be
important (if this entry is the only one) or negligible (if this entry is lost among many
others).

It was important to take the time to define the “right™ distance because results about
consistency are only as interesting as the distancec that they are obtained under. If we want
the appealing features of the Frobenius norm, it seems that the above choice is the only one
(up to equivalence) that makes any sense as N goes to infinity.

Even though Definition 2 is crucial for theoretical results of consistency, it does not
matter at all in practice. As will be seen later, the usefulness of this chapter from an
empirical point of view is to estimate consistently shrinkage intensities (the scalars m and
r}/d?, see Section 1.3.2) that are ratios of distances or inner products of N-dimensional
matrices. Therefore the scalar coefficient cy will cancel itself out from every formula used

in practice.

1.2.3 Consistency

Let m = £ o I, where [ is the identity. The scalar mn measures the scale of the covariance
matrix. m is the average of the diagonal elements and also the average of the cigenvalues
of X. The scalar multiple of the identity closest to X is m/. m/ is the orthogonal projection
of Z onto the line spanned by I. If I o I = ||I]|* was not equal to one, then the correct
definition would be: m = (Zo I)/(I o I).

The mean squared error of the sample covariance matrix is of order N/T'.

Theorem 1 E[||Z — ||} — (N/T) m? — 0, where convergence is meant as ' goes 1o

infinity.

When N/T does not vanish, which is the general case under Assumption 1, the sample

covariance matrix is not consistent. When N/T vanishes, which is a special case of
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Assumption 1, the sample covariance matrix is consistent. In particular, when N is bounded,
our framework degenerates to standard asymptotics.

T is not consistent because of its off-diagonal elements. Granted, the variance of cach
one of them vanishes in 1/7, but so many of them accumulate that the error of 3 as a whole
does not vanish.

T = 2,000 time periods might sound like a lot, but it is not enough if we have as many
as NV = 1,000 stocks: it is about as bad as using two observations to estimate the variance
of one random variable. 1,000 is less than half the number of stocks trading on the New
York Stock Exchange (NYSE) alone. In order to estimate a 1,000 x 1.000 covariance
matrix accurately, we need at leasi, say, 10,000 observations, which means 40 years of daily
data, longer than the Center for Research in Security Prices (CRSP) database holds, and in
any case long enough for nonstationarity to become a major concern.

Even though we have not tried to obtain a formal proof, we firmly believe that no other
covariance matrix estimator is consistent under Assumptions 1-3. Yet all hope is not lost.
More than its existence, it is the nature of this error that hurts portfolio selection. We
will soon see that the heart of the problem lies in the smallest eigenvalues of the sample
covariance matrix. First, we review the importance of covariance matrix eigenvalues for

portfolio selection.

1.2.4 Portfolio Selection and Covariance Matrix Eigenvalues

Markowitz (1952) considers the problem of selecting the N x 1 vector of weights w of a
portfolio of N stocks whose returns have N x N covariance matrix X, under the i linear
constraints defined by the N x K matrix of coefficients C and the K* x | right-hand-side

vector . The objective is to minimize the variance of portfolio returns:

minw'Tuw
w

st. C'w=r

-» w=X'C (C'Z"C)—l'y (1.3)
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Typical constraints impose that weights sum to one and portfolio returns have a required

expectation.
Recall the decomposition £ = UAU’. Let u,, . ... uy denote the columns of [, i.e. the
eigenvectors of Z. Let Aj,..., Ay denote the diagonal terms of A, i.e. the eigenvalues

of X. Let C, = C(C'E7'C)™'y. It is the linear combination of constraints where the
coefficient of each constraint is its shadow price. Then Equation (1.3) can be rewritten as
w=X'C,=UAN'U'C,, or as:
N 1,
w=)y_ C;‘“'ui. (1.4)
i

The constrained minimum variance portfolio spreads its weight across the eigenvectors
of X. The weight on eigenvector u; is inversely proportional to its eigenvalue A;. A; is
the variance of returns on the portfolio with weights u,;. It measures the riskiness of u;.
If an eigenvector is less risky, it receives more weight; riskier, less weight. This is the
mathematical translation of the economic idea of diversification. Spreading weights across
eigenvectors is like putting all the eggs in different baskets.

In practice, X is not known, so we can be tempted to replace it with the sample
covariance matrix X. Decompose it into ¥ = UAU' , where U is the rotation matrix whose
columns 1,,...,uy are the eigenvectors of f, and A the diagonal matrix whose diagonal
terms X,,..., An are the eigenvalues of ¥. Portfolio selection with £ yields weights
@ = SN (Cli;/X)i;, where C, = C(C'E™'C) .

The true riskiness of eigenvector i; is u;Xw;, estimated by ﬁ;f‘.ﬁi = :\,. If ;\,» is close
to zero but #;Xi; is not, it is a catastrophe. Since weight is in 1/ X if A, is near zero by
mistake, nearly infinite weight falls on an eigenvector that is not truly riskless. It is like
puttir.r all the eggs in the same basket, and discovering that it is not safe when all the eggs
get b:oken A covariance matrix estimator for portfolio selection must refrain from having
eigenvalues near zero, unless there is convincing evidence that it is no mistake. This is the
same as saying that the covariance matrix must not be singular or even near-singular, an
idea already known to Michaud (1989).

Next, we show that some eigenvalues of the sample covariance matrix are systematically
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too close to zero by mistake, when N is not negligible with respect to 7. The sample
covariance matrix is typically singular or near-singular in practical applications. This is

what makes it ill-suited to portfolio selection.

1.2.5 Sample Covariance Matrix Eigenvalues

We are trying to show that the smallest eigenvalues of the sample covariance matrix are
biased towards zero. Since they are constrained to be nonnegative, we need to show that
they are biased downwards. The full picture is that the smallest eigenvalues are biased
downwards and the largest ones upwards. This statement is equivalent to saying that

sample eigenvalues are too dispersed.

Theorem 2 Sample eigenvalues have approximately the same average as true ones, in the
sense that E[(1/N) TN, X] = (1/N) TN, A and Var|(1/N) &N, M) = 0.

Yin (1986) proves a more general version of this result, but under stronger assumptions.

Recall from above thatm = Zo I = (1/N) &N, A

Theorem 3 Sample eigenvalues are more dispersed than true ones, in the sense that:

E[—I—XN:(:\i—m)z] = -l—f:(/\,-—m)2+E["i—2"2] (1.5)
N5 N =
Yin (1986) proves a related result under stronger assumptions.?

T uses all of its error to feed an increase in the dispersion of its eigenvalues. It is as
if ¥ wanted to have the most dispersed eigenvalues, and used all that differentiates it from
2 to beat X at this game. Theorem 3 implies that the smallest eigenvalues of % are biased
downwards (towards zero), and the largest ones upwards. Ironically, it is due to the fact that
sample covariance matrix entries are unbiased, as is apparent form the proof of Theorem 3.

A property of eigenvalues helps understand the mechanism at work.

Theorem 4 The eigenvalues are the most dispersed diagonal elements that can be obtained

by rotation.

2He proves that (1/N) N (A = m)? = {(1/N) =X, (A = m)2 + (N/T) m2} = 0 in probability. His
result follows from Theorems 1 and 3.
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Since X is unbiased and U is nonstochastic, U'ZU is an unbiased estimator of U'ZU. The
diagonal elements of U 'TU are approximately as dispersed as the ones of U'2U. For
convenience, let us speak as if they were exactly as dispersed. By contrast, U'SU is not
21 unbiased estimator of U’SU. This is because the errors of U and I strongly interact.
by Theorem 4, the diagonal elements of U'EU are more dispersed than those of U’ SU and
U'EU. This is why sample eigenvalues are more dispersed than true ones.

Evidence against the sample covariance matrix is even more damning than Theorem 3
suggests, because X = ﬁ;iﬁi should not be compared to \; = u!Xu;, but to #/Xu;. We
should compare estimated vs. true riskiness of eigenvector #,. In portfolio selection, we
entrust our money to ii; based on 7i/Zi;, and we end up bearing the risk /Z7,. By Theorem 4
again, the diagonal elements of U’XU are even less dispersed than those of U'EU. Not only
are sample eigenvalues more dispersed than true ones, but they should be less dispersed!
Intuitively: statisticians should shy away from taking a strong stance on extremely small
and large eigenvalues, because they know that they don’t know everything. The sample
covariance matrix is guilty of taking an unjustifiably strong stance.

How important is this effect in practice? When variables outnumber observations, it is
infinitely important. Since £ = (1/7)X X’ and the dimension of X is N x T, the rank of
% is the minimum of N and T. When N > T, the rank of Z is less than its dimension N.
3 is rank-deficient. This means that it is singular and that some of its eigenvalues are equal
to zero. It cannot be inverted and used for portfolio selection.

By continuity, we expect the sample covariance matrix to become near-singular as the
ratio N/T gets close to one. In order to see how sample covariance matrix eigenvalues
change in the ratio N/T, we look more closely at a particular case. It is our experience that

what follows is representative of the general case.

1.2.6 Particular Case: the Identity Matrix

To illustrate how dangerous the sample covariance matrix is for portfolio selection, we
analyze in more detail the particular case £ = /. Assuming that the ratio N/T converges

to a finite positive limit ¢ called the concentration, Maréenko and Pastur (1967) derive the

23



limit of the distribution of sample eigenvalues.

A popular way to graph eigenvalues is to sort them in descending order, and plot the
eigenvalues as a function of their rank. We follow this convention, with one adjustment
due to the fact that the number of eigenvalues goes to infinity. We plot the eigenvalues as a
function of their relative rank, defined as the rank divided by the total number of eigenvalues.
As N goes to infinity, the relative rank remains between zero (largest eigenvalues) and one
(smallest).

By assumption, £ = I, therefore true eigenvalues are all equal to one. Their graph is
a horizontal line at one. Figure F-1 plots sample eigenvalues for various concentrations,
as given by Marcenko and Pastur’s asymptotic approximation. If concentration was zero,
sample eigenvalues would also plot as a horizontal line at one. However, for positive
concentrations, even small ones, the smallest eigenvalues are substantially biased towards
zero. Bias becomes more severe as concentration increases to one. When ¢ > 1, the
smallest eigenvalues are equal to zero.

Figure F-1 speaks against using the sample covariance matrix for portfolio selection
unless NV is negligible with respect to T, which is rarely the case in practice. From the above
discussion, it is because the sample covariance matrix uses the accumulation of errors off
the diagonal to bias the smallest eigenvalues downwards and the largest ones upwards. This
is a widespread phenomenon. For example, it is well-known that the smallest estimated
betas are biased downwards and the largest ones upwards. It can even be said that this
phenomenon plays an important role in the popularity of alternatives to the maximum
likelihood such as Bayesian statistics and decision theory. It is particularly pronounced
here because the excess dispersion of sample eigenvalues is in N/T, instead of e.g. 1/T
for betas. Also, it is particularly damaging, because the downwards bias of the smallest
eigenvalues, when it draws them close to zero, has infinitely destructive consequences on
portfolio selection.

The bias of the eigenvalues of the sample covariance matrix is intimately related to the
unbiasedness of its entries. To put it bluntly, either the eigenvalues or the entries must be
biased: we cannot have it both ways. Equation (1.4) makes it clear that portfolio selection

calls for minimally biased eigenvalues, even if the price to pay is to bias the entries. This
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is the topic of Section 1.3.

1.2.7 Potential Applications to Tests for the Number of Factors in the
APT

Some of the plots in Figure F-1 bear a striking resemblance to plots of the eigenvalues of
the sample covariance matrix of stock returns in tests for the number of factors in the APT.
There, the emphasis is not on the smallest eigenvalues, but on the largest ones: are they large
enough to support the APT? As can be seen from Figure F-1, the largest sample eigenvalues
are severely biased upwards, therefore inference must be drawn cautiously. This is the point
made by Brown (1989), based on Monte-Carlo simulations. The review by Connor and
Korajczyk (1992) nakes it clear that this is a pervasive problem in the literature.

Maréenko and Pastur (1967) solve much more than the special case £ = I. They
derive a general equation that yields the distributi~n of sample eigenvalues as a function
of the distribution of true eigenvalues and the concentration. An original approach to APT
tests would be to use this equation in reverse to back up true eigenvalues from sample
eigenvalues. This is an appealing direction for future research, but there is one obstacle. It
is an ill-posed problem.

Infinitesimal errors on the estimation of sample eigenvalues are amplified into large
errors on true eigenvalues as we go through the equation in reverse. For example, Black
and Scholes (1973) obtain a partial differential equation that determines the value 17(S, 1)
of a European option as a function of the stock price S and time t. They know V(-,1,)
at expiration date t,, and want V' (-,t;) today at ¢, < t,. This is a well-posed problem.
Reverse the direction of time and it becomes an ill-posed problem. It would not be possible
to deduce V (-, t;) from V (-, t;) for t, > t,. More precisely, a lot of very different solutions
V (-, t;) correspond to almost exactly the same initial conditions V'(-,¢,). Fortunately for
option pricing, time flows in the right direction.

The distribution of sample eigenvalues is a smoothed-out version of the distribution
of true eigenvalues. It is a general fact that “un-smoothing” is an ill-posed problem.

Figuratively, this is because the resolution of the picture is diminished by the action of
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smoothing. In our case, it is the error of sample eigenvectors that smoothes out true
eigenvalues into sample eigenvalues. For option pricing, it is the uncertainty about the
terminal value of the stock price that makes today’s option value V (-, ¢|) smoother than the
terminal payoff V (-, t5).

Ill-posedness makes it hard to obtain reliable estimators of true eigenvalues. Getting
confidence intervals is probably even harder. Not surprisingly, the degree of ill-posedness
increases in the ratio N/7T. We interpret it as: we cannot get something for nothing. We
firmly believe that ill-posedness is not an artifact of the Mar¢enko and Pastur equation, but
a deep feature of the problem itself.

However, the degree of ill-posedness is not uniform. The problem is better posed around
isolated eigenvalues. In practice, we expect the largest eigenvalues to be quite isolated.
This may be what makes it possible to recover them. Some more details are in Appendix

A. For a different and innovative approach, see Adamek (1994).

1.3 Improved Covariance Matrix Estimation

We derive an estimator that improves over the sample covariance matrix when the number of
variables N is not negligible with respect to the number of observations T'. Generalizations

are described.

1.3.1 Linear Shrinkage of Sample Eigenvalues

As we saw in Section 1.2, the problem with the sample covariance matrix is that its
eigenvalues can be too dispersed. The line of attack is suggested by established meth-
ods in multivariate statistics. Muirhead (1987) reviews decision-theoretic alternatives to
the sample covariance matrix and concludes that they “have a tendency to move the sam-
ple eigenvalues together in an intuitively appealing way.” Shrinking sample eigenvalues
together is attractive for portfolio selection because it reduces singularity by pulling the
smallest eigenvalues away from zero. We follow this approach.

To simplify matters, we focus on linear shrinkage. That is, we consider improved
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eigenvalues estimators of the form :\,- =a+ 5:\;’, i=1,..., N, where o and /3 are scalars.’?
This is equivalent to replacing A with A = af + fA. Following the decision-theoretic
literature, we keep the same eigenvectors as the sample covariance matrix. The improved
estimator is: 2 = UAU' = U(al + SA)U' = ol + BE.

The central question is to find the coefficients o and 3. If we were only trying to avoid
singularity, the choice of « and 3 would be ad-hoc. Instead, we ought to be minimizing
some criterion. A natural candidate is the mean squared error:

min E “Ii - 2“2]

af ! (1.6)
s.t. X=al + pX.

Is it compatible with the need to avoid singularity? E[[|Z — Z|*] = E[||U'Z0 - U'Z0|]?) =
E[(1/N) =N, (@ Z4; — @,Zi;)?] + constant, where the constant does not depend on & and /3.
Therefore choosing o and 3 to minimize mean squared error is the same as choosing them
to minimize the distance between the estimated riskiness ﬂﬁ-iﬁi of eigenvector u; and its
true riskiness 4 Z%;, on average across ¢ = 1,..., N. For portfolio selection, this is a very
good criterion, since so much rides on estimating the riskiness of each eigenvector well.
The mean squared error criterion ‘s in alignment with the objectives of portfolio selection.
Even more alignment could conceivably be achieved, for example by letting the criterion
depend on the matrix of portfolio selection constraints C (cf. Equation (1.2)), but this is left
to future research.*

u\ Xy, ..., UyZuy are even less dispersed than true eigenvalues, so we anticipate that
our estimator’s eigenvalues will be less dispersed than true ones. This should keep the

smallest eigenvalues of ) safely away from zero.

1.3.2 Optimal Linear Shrinkage

If we could observe the true covariance matrix X, we could easily solve Equation (1.6).

YOne advantage of linear shrinkage is that it preserves the ordering of the eigenvalues (if 3 > 0), an
intuitively appealing property whose theoretical importance is proven by Sheena and Takemura (1992).
41 thank Fischer Black for this suggestion.
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Theorem 5 Letm = Sol. Letr? = ||[E—ml|?, 3 = E[/Z- % and 4* = E[I|Z - m|]).
The solution X to Equation (1.6) is:

2
2

2-
r ml + f.'.y_;_ (1.7)

=0 &

Its mean squared error is E[||E — £||}] = rir/d? < min(r2, 12).

By Theorem 3, 72 +72 = d?, so I is a weighted average of [ and Z. The weight placed on
mI increases with the error of £ and decreases with the error of m/. For the weight on 5.‘., it
is the opposite. The dispersion of the eigenvalues of £ is E[|| — m[|[?] = ri/d* < ri: the
eigenvalues of 5 are even less dispersed than X's. This effect becomes more pronounced
as the error of X increases, i.e. as the ratio N /T increases. % is the projection of X onto the
line between m/ and X. Figure F-2 shows this geometrical interpretation.

Unfortunately, % is not an estimator because it depends on the unobservable matrix X.
As we saw, in general it is impossible to estimate X consistently. However, we do not need
all the entries of X: the four parameters m, 72, r3 and d” suffice. The key insight of this
chapter is that, as T" goes to infinity, even if N goes to infinity too, it is possible to estimate
these four parameters consistently.

First, Theorem 2 reveals that m can be estimated simply by m = (1/N) T, A the
average of sample eigenvalues is a consistent estimator of the average of true eigenvalues.

Second, a natural estimator of d? = E[||Z — m/||?] is d* = || — m/||.
Theorem 6 d — d 5 0, where <> denotes convergence in probability as T goes to infinity.

Third, let the N x 1 vector ., denote the ¢ column of the observations matrix X for
t=1,...,T. £ = (1/T)X X' can be rewritten as £ = (1/T) ©7_, z..2’,. £ is the average
of the matrices z.,z/, (t = 1,...,T). Since the matrices z.,z/, are iid across t = 1,..., T,
we can estimate the error d2 = E[||Z — ||| of their average by seeing how far cach one of

them deviates from the average.
Theorem 7 Define 72 = (1/T%) L., ||z.42’, - Z||*. Then 72 -2 5 0.

Finally, Theorem 3 can be rewritten as r? = d* — r3.
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Theorem 8 Define 72 = & — 7. Then 2 — r} 5 0.

IJ'L

If, for a given realization, & < 73, then we recommend correcting 4* and/or 77 50 that they
are equal. It can be shown that this does not affect the validity of the theorems.

Pleasc note that Theorems 6, 7 and 8 are non-trivial since, in spite of the division by .V
in the definition of the norm || - ||, the scalars , ry, and r, do not converge to zero (except
in special cases), as is apparent from the proofs.

Plugging consistent estimators in place of the unobservable parameters in Equation (1.7)
yields a consistent estimator of £ with the same asymptotic properties. This is the main

result of the chapter.

Theorem 9 The improved estimator

™M

(1.8)

12
-~
SNt )

estimates the solution £ to Equation (1.6) consistently, i.e. ||Z — Z||? 5 0. BothE and £
have the same asymptotic mean squared error, i.e. E[||Z — Z||}] — E[|IZ - Z|I*] — 0. and

773 /LP estimates it consistently, i.e. (Fi73 /(1 ) = (rir3/d?) 2o

):i is an improved estimator of the covariance matrix. It is a consistent estimator of the
linear combination of the sample covariance matrix with the identity matrix that minimizes
mean squared error. It is easy to verify that Z is invariant by rotation, i.c. premuluplymg
the observations X by a rotation matrix V' (V'V" = V'V/' = I) changes Z into 1’ Z! "

By Theorem 1, the weight on 71 increases in N/T. If N remains bounded, asymptoti-
cally all the weight is on the sample covariance matrix X.

The advantage of our framework over finite sample statistics is that we do not have to
take into account the error of estimators of the unobservable parameters m, ri, r3 and .
The advantage over standard asymptotics is that we encompass realistic situations where

the sample covariance matrix is not optimal.
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1.3.3 Generalization

§’_ is a weighted average of m/ and X. M/ can be thought of as an estimator of the
covariancc matrix. It has asymptotically minimum mean squared error among a certain
class of estimators: scalar multiples of the identity matrix. This class imposes a lot of
structure on the covariance matrix: no covariances, and all variances are the same. There
is only one free parameter, as opposed to N(N + 1)/2 for %. This parsimonious structure
makes ] heavily biased, but at ieast it prevents it from being singular, a problem that hurts
the unstructured, unbiased estimator £.

Other structures can be imposed on the covariance matrix. Frost and Savarino (1986)
impose that all stock returns have the same variance and all pairs of stock returns have the
same covariance. They have two free parameters. We can also impose that the covariance
matrix is uiagonal (/N parameters), or that all correlation coefficients are equal (N + 1
parameters).

We call such estimators: “structured.” Other structured estimators of interest in Finance
are the index models. For example, Sharpe’s (1963) single index model assumes that
the idiosyncratic risks of different stocks are uncorrelated. The idiosyncratic risk is the
fraction of the risk that is not systematic risk. Systematic risk is the fraction of the risk
that can be explained as covariance with an index, usually a broad-based market index. In
general, if there are K indices, then we need to estimate the covariance matrix of the indices
(K (K + 1)/2 parameters), the covariance of each stock with each index (W' N parameters)
and each stock’s idiosyncratic risk (/N parameters), for a total of (K + i)(N + IK'/2) frec
parameters. When K < N, this is still much fewer parameters than the sample covariance
matrix.

Structured estimators are popular for portfolio selection. They are carefully designed
to avoid the singularity problem of the sample covariance matrix. Their main selling point
is that they do not place infinite weights on risky eigenvectors by mistake.

However, the way that they obtain this desirable feature is ad-hoc. They impose arbitrary
structure that they know is wrong, then disregard any evidence that goes against it. They

throw away all sample information that does not fit in their arbitrarily specified structure.
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It would be better to recycle the information that they ignore, in an optimal way. We
recommend taking a well-chosen weighted average of a structured estimator and the sample
covariance matrix.

Let T denote any given structured estimator of interest to the statistician. Consider the

problem:
o |5 - 3]
v " _ (1.9)

st. T=wX+ (1 —w)k

Sisa weighted average of two estimators, one generally singular (£), and the other one

generally not (£). Which one does it inherit its properties from? An elementary resuit from

matrix algebra answers.

Proposition 1 The smallest eigenvalue of S =wh+ (1- w)f‘. is at least as large as w times

the smallest eigenvalue of .

¥ is constructed so that its smallest eigenvalues do not come near zero. Therefore % is
generally not singular, unless w is very small. If w was very small, then it would mean that
the sample covariance matrix can hardly be improved on. From what we have seen so far,
this would be rather surprising when N is of the same order of magnitwude as T'.

Again, let us pretend for amoment that we can observe X. As above, let r} = E[||Z-Z||*,
r2 = E[||Z — Z||] and d2 = E[||Z — Z||?]. In addition, let ¢ = E[(Z — £) o (£ — £)] measure

the “covariance” between the errors of both estimators.

Theorem 10 Then the solution to Equation (1.9) is given by:

i:r—%—d—;fi+(l—"§(;‘p)i. (1.10)
The geometric interpretation is the same as in Figure F-2, except that X replaces m 1 and that
the triangle (Z, %, 52) does not necessarily have a right angle at £ anymore. In the particular
case ¢ = 0, the weight on ¥ reduces to r§ /dz, as in Equation (1.7). This simplification takes
place (asymptotically) for £ = i/, but not necessarily for other structured estimators.
Again the problem is to estimate the unobservable parameters ri, 73, ¢* and ¢ con-

sistently. We do not provide formal proofs of consistency, since they would have to be
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rewritten for every structured estimator X. We just indicate how the general logic of the
argument for T = M/ can be extended to other structured estimators. In Section 1.4, we
provide empirical support for these extensions.

We can take the same estimator 72 as before. The estimator of ¢? becomes * = ||Z-E||*.
The additional complication is that we need an estimator @ of ¢. Since d* = r} + 13 — 2,
@ would let us estimate 72 by 72 = & — 7 + 2¢.

LetE = [7;)i j=1,..~ and E = [;,}i j=1..n- Since p = (1/N) TN, }:;‘_, Cov(a,,, a,,],
all we need is estimators of p;; = Cov[a,,,d,;] for i,j = 1,...,N. They arc usually
suggested by the nature of X. The idea is that, if we can estimate @,;, then we can estimate
the error on ;j, and its covariance with the error on g;;. Please keep in mind that o,
vanishes in 1/7T, even though ¢ itself may be of order N/T. Therefore, in the more
complicated cases, the delta method can be used to estimate ¢;; consistently. Given the
estimators ¢;; fori,j = 1,..., N, we form ¢ = (1/N) N f’:, Pij-

Appendix B gives the formulaof ;5 (¢, j = 1,..., N) for various structured estimators.

1.3.4 Comparison with Previous Work in Multivariate Statistics

This approach has an obvious Bayesian interpretation. Bayesian statistics combine sample
information with other sources of information. The other sources are summarized in a
“prior” distribution of the unknown parameter. In our case, the prior distribution puts all its
mass on a sphere centered on X, with radius 7,. Then sample information reveals that the
true parameter also lies on another sphere, with center % and radius 7,. Combining prior
and sample yields a posterior distribution. In our case, the true covariance matrix must lic
on the intersection of the two spheres. This intersection is a circle. At the center of this
circle stands the improved estimator § This interpretation is shown in Figure F-3.
Fundamental Bayesian questions are: Where does the prior come from? How confident
are we in the prior? In finite sample, it is very hard to answer these questions satisfactorily.
If the statistician chooses the prior without looking at data at all, it might be very inaccurate.
Empirical Bayesians do look at data, but then they pretend that they did not, and ignore

dependence between prior and sample. In some cases, dependence can safely be neglected,
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but how do we know that?

By contrast, in our asymptotic framework, we can build the prior around any structured
estimator already used in practice. Furthermore, the degree of confidence in the prior can be
estimated consistently. In particular, we estimate the parameter » that captures dependence

between prior and sample. We find out for any given prior whether  can be neglected, and

if it cannot be, we account for it in Equation (1.10).

In the established nomenclature, our work is not pure Bayesian because we estimate the
prior from the sample. It is not empirical Bayesian either because it takes into account the
dependence between the estimated prior and the sample. It is decision theory.

For the covariance matrix, previous literature on decision theory (and on pure and
empirical Bayesian statistics too) has been only in finite sample. The reason is that, under
standard asymptotics, the sample covariance matrix is consistent, so there is no need to
seek alternatives. Decision theory in finite sample is not very tractable. Also, it relies on
the Wishart distribution, which has two limitations: random variables must be normally
distributed, and if variables outnumber observations then the Wishart density does not exist
(because I is rank-deficient). For portfolio selection, both limitations are serious.

One of our contributions is to realize that these are not limitations of decision theory
itself, but of finite sample. In stock market finance, we are fortunate enough to have
large numbers of observations, which make asymptotic approximations realistic, and large
numbers of variables, which open the door to improvements over the sample covariance
matrix. This is the ideal situation to free decision theory from finite sample drawbacks.
All that is needed is to relax the standard asymptotic assumption that keeps the number of
variables bounded. ;f. is the first estimator of the covariance matrix based on asymptotic

decision theory.

Stein (1975) suggests that invariance by rotation is an important property for covariance
matrix estimators. Intuitively, it means that the statistician lets the data speak without
putting a spin on what they say. This excludes all of the structured estimators cited above

except m /. The existing literature does not contain any estimator invariant by rotation and
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theoretically motivated when N > T. Perhaps more importantly, it contains no estimator
that is invariant by rotation and is known not to be singular or near-singular when N > T
This has lead some to believe that the inverse of the covariance matrix could not be estimated
atalt when N > T.

Now it can be. The estimator i of Section 1.3.2 is invariant by rotation. It has a sound
theoretical motivation when N > T. As a matter of fact, it does not even matter whether
N > T, which is satisfying because we should expect some continiuity between N = 999,
T = 1000 and N = 1000, T = 999. The eigenvalues off) are asymptotically even less
dispersed than X’s, which prevents ):.“. from being near-singular or singular. The dispersion
of the eigenvalues of i actually decreases in the ratio N/T. Therefore Eml is the first

estimator of inverse of the covariance matrix that is invariant by rotation and can be used

when variables outnumber observations.

1.4 Application to Portfolio Selection

The goal of this section is to find out how the asymptotic results of Section 1.3 carry through
to large but finite sample. We first compare § to other estimators in terms of mean squared

error in Monte-Carlo simulations. Then we apply £ to historical stock returns data.

1.4.1 Monte-Carlo Simulations

Our purpose is to compare the mean squared errors of various estimators across a range of
situations. We focus on estimators that are invariant by rotation, therefore we use Equation
(9) for §.

The benchmark is the mean squared error of the covariance matrix. We report the
Percentage Relative Improvement in Average Loss of fl, defined as: PRIAL(?:) = (E[]lf‘. -
)% - E[||§— %||3])/E[|IZ— Z||?] x 100. If the PRIAL is positive (negative), then z performs
better (worse) than X. The PRIAL of the sample covariance matrix is zero by definition.
The PRIAL cannot exceed 100%. We compare the PRIAL of f: to the PRIAL of other

estimators from finite sample decision theory.

Haff (1980) introduces an estimator with an empirical Bayesian interpretation. Like 3, it
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is a linear combination of the sample covariance matrix and the identity. The difference lies
in the coefficients of the combination. Haff’s coefficients do not depend on the observations

X, only on N and T. If the criterion is the mean squared error, Haff's approach suggests:

o NT -2T -2 T
ZEB——TV—';I',‘—HIEBI-F'T—_*_—lZ (L.11)

with 7igg = [det(Z)]'/N. When N > T we take nigg = i because the regular formula
would yield zero. The initials EB stand for empirical Bayesian.
Stein (1975) proposes an estimator that keeps the eigenvectors of the sample covariance

matrix and replaces its eigenvalues :\., ey A ~ by:

1
i~ A

_ N

IW//T N+1+42N) i=1,...,N. (1.12)
=1

#i

>

.

These corrected eigenvalues need neither be positive nor in the same order as sample
eigenvalues. To prevent this from happening, an ad-hoc procedure called isotonic regression
is applied before recombining corrected eigenvalues with sample eigenvectors.® Haff (1982)
independently obtains a closely related estimator. In any given simulation, we call Tsu the
better performing estimator of the two. The other one is not reported. The initials SH stand
for Stein and Haff.%

Stein (1982) and Dey and Srinivasan (1985) botn derive the same estimator. Under a
certain loss function, it is minimax, which means that no other estimator has lower worst-
case error. The minimax criterion is sometimes criticized as overly pessimistic, since it
looks at the worst case only. This estimator preserves sample eigenvectors and replaces

sample eigenvalues by:

T ~
Ai 1.13
T+N+1-2" (113)
where sample eigenvalues X1, ..., Ay are sorted in descending order. We call this estimator

SIntuitively, isotonic regression restores the ordering by assigning the same value to a subsequence of
corrected eigenvalues that would violate it.

SWhen N > T' some of the terms A; — X,- in formula (1.12) result in a division by zero. We just ignore
them. Nonetheless, when N is too large compared to T, the isotonic regression does not converge. In this
case isn does not exist.
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f‘.Mx. The initials MX stand for minimax.

We simulate normally distributed random variables. The true covariance matrix X can
be taken diagonal without loss of generality. We draw its eigenvalues according to a log-
normal distribution. We set their average equal to one without loss of generality. We let
their dispersion 77 vary around the central value 1/2. We let the ratio .N/7T" vary around the
central vaiue 1/2. Finally, we let the product NT vary around the central value 800. We
study the influences of 73, N/T and NT separately. When one parameter moves, the other
two remain fixed at their central values.

The asymptotic PRIAL of 3 implied by Theorems 1 and 9is (N/T)/{(N/T)+73) x 100.
The PRIAL increases in N/T and decreases in r3. This is intuitive because N/T is the
error on X and r# is the error on m1.

When all three parameters are fixed at their central values, we get the results in Table 1.1.

“Risk” means the average mean squared error over 1,000 simulations. For the central values

Estimator i i iEB iSH iMX
Risk 0.5372 | 0.2723 | 0.5120 | 0.3076 | 0.3222
Standard Error on Risk || (0.0033) | (0.0013) | (0.0031) | (0.0014) | (0.0014)
PRIAL 0.00% | 4931% | 4.69% | 42.74% | 40.02%

Table 1.1: Result of 1,000 Monte-Carlo Simulations for Central Parameter Values.

of the parameters, the asymptotic PRIAL of E is 50%. Table 1.1 shows that asymptotic
behavior is practically attained for N = 20 and T' = 40. E improves substantially over )
and iEB and moderately over flsﬂ and iMx. This may be due to the fact that ‘an and imx
were originally derived under another loss function than the mean squared error.

When we increase N/T from zero to infinity, the asymptotic PRIAL of § increases
from 0% to 100% with an “S” shape. Figure F-4 coufirms this.’ }:: always has lower mean
squared error than Tand Tgp. It usually has slightly lower mean squared error than Ton and
)EMX. fZSH is not defined for high values of N/T. imx performs slightly better than 5:l for

the highest values of N/T. This may be due to the fact that % does not attain its asymptotic

"Corresponding tables of results are available from the author upon request. Standard errors on our
estimators of the mean squared error have the same order of magnitude as in Table 1.1.
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performance for values of T below 10.

When we increase 7 from zero to infinity, the asymptotic PRIAL of i decreases from
100% to 0% with a reverse “S” shape. Figure F-5 confirms this. >:: has lower mean
squared crror than ) always, and than $en almost always. }:I always has lower mean
squared error than fJSH and iMx. When 77 gets too large, f‘.s" and iMx perform worse than
the sample covariance matrix. The reason is that i/ is very erroneous, and they shrink
sample eigenvalues together too much. It is very reassuring that, in a case where its leading
competitors perform much worse than 3, E performs at least as well as 3.

When we increase NT from zero to infinity, we should see the PRIAL of§ converge
to its asymptotic value of 1/2. Figure F-6 confirms this. E always has lower mean squared
error than ¥ and ies- It has moderately lower mean squared error than isn and iMx.
except when T is below 20. When T is below 20, §. performs slightly worse than Ssn and
moderately worse than Smx. but still substantially better than 3.

When the number of variables N is large, E‘. and ¥ take much less time to compute
than fgg, isﬂ and imx because they do not need eigenvalues and determinants. Indeed the
number and nature of operations needed to compute )2: are of the same order as for X. It can

be an enormous advantage when the covariance matrix is very large. The only seemingly

slow step is the estimation of 72, but it can be accelerated by “writing:

2 _ L

2= NT 4

N
1=

i [% (X/\2) (XAz)’Lj _ % if‘_‘ {(%XXI)MJ

1j=1 i=1 j=I ij

where [];; denotes the entry (7, j) of a matrix and the symbol » denotes elementwise
exponentiation, i.e. [S"?;; = ([S];;)? for any matrix S.

Simulations not reported here study departures from normality. These departures have
little impact on the above results. In relative terms, 3 and Zgg appear to suffer the most;
then isﬂ and iMx; and § appears to suffer the least.

We draw the following conclusions from these simulations. The asymptotic theory
developed in Sections 1.2-1.3 approximates finite sample behavior well, as soon as T and
N become of the order of 20 to 40. i has lower mean squared error than the sample

covariance matrix across the wide range of simulations studied. X usually improves over
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existing finite sample decision theory estimators, in terms of mean squared error.® It
sometimes performs substantially better than them. It never performs substantially worse
than them.

This set of simulations indicates that the estimator }E from Section 1.3.2 can be used as

an all-purpose estimator of the covariance matrix.

1.4.2 Historical Data

This section takes the covariance matrix estimator § to the data. The objective is to estimate
how well it would have performed over the past, had it been used for portfolio selection.

Monthly stock returns in excess of the riskfree rate and capitalizations from July 1926 to
June 1993 are drawn from the Center for Research in Security Prices (CRSP) database. Let
y denote any year between 1936 and 1992. Stock returns from July of year y — 10 to June
of year y are used to estimate the covariance matrix of stock returns. Stocks with missing
observations are excluded. We consider only common stocks traded on the New York Stock
Exchange (NYSE) or the American Stock Exchange (AMEX).” We require stocks to have
a valid market capitalization in June of year y.

From these data, we extract two factors that past research has associated with stock
returns. The first one is the beta with respect to a CRSP value-weighted index including
dividends.'® The second factor is the logarithm in base 10 of the market capitalization
in dollars of a given stock, minus the average logarithm of market capitalization across
all stocks in the dataset in year y. We call this factor: “size”, for brevity. The average
is subtracted because a stock with the same 50 million dollars capitalization would have
been relatively large in 1936, and relatively small in 1992. Thus, a stock with “size” one
(respectively minus one) is ten times larger (respectively smaller) than the average stock in

the market.

8We acknowledge that )ESH and f’.Mx were designed with another criterion than the mean squared error
in mind. Our conclusions say nothing about performance under any other criterion. Nevertheless, the mean
squared error is an important criterion. Also, there is some similarity between criteria, as suggested by the
fact that gy and Zyx do perform well in terms of mean squared error.

9AMEX stocks do not appear in the CRSP database before July 1963. We do not include them before
y = 1973,

19Before July 1963, the NYSE index; afterwards, the NYSE and AMEX index.
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We compare different covariance matrices, either of the structured type (Z) or the
asymptotic shrinkage type (f‘.). We do not include the other estimators because they are too
costly to compute or not defined at all when N is much larger than T', which is the case
here.!' ¥ can be either m/ as in Section 1.3.2, or any of the four structured estimators in
Appendix B. Each of these five structured estimators gives a shrinkage estimator. Therefore
there are ten estimators in total.

We impose different sets of portfolio constraints. We always make weights sum up to
one. In addition, we impose zero, one or two constraints chosen among the following two:
the weighted average of betas has a required value; the weighted average of sizes has a
required value. Therefore there are four possible sets of constraints.

Based on these data, we buy at the end of June of year y foity different kinds of
minimum variance portfolios corresponding to the ten covariance matrices and the four
sets of constraints. We hold them until the end of June of year y + 1, at which time they
are rebalanced in a similar fashion, incorporating fresh data. This scheme yields a time
series of monthly returns for each of the forty kinds of portfolios from July 1936 to June
1993. Since each rebalancing is based only on information that is available at the time, we
are simulating realistic investment strategies. Tests based on strategies such as these ones,
i.e. that do not require hindsight, are called predictive. They are easier to interpret than
non-predictive tests. In addition, since we measure true buy-and-hold returns and rebalance
portfolios only once a year, transactions costs are quite limited. We ignore them.

The most urgent questions concern shrinkage weight (72 — ¢)/d*: Is it between zero
and one? Is it relatively stable over time? Does it make intuitive sense? Qualitatively, the
answers to these three questions appears to be yes in Figure F-7. Weights are between 0.07
and 0.93 for every structured estimator and every year. Each structured estimator’s weights
remain within the same range of width 0.3 (approximately) throughout the 67 years. The
ordering between weights remains the same over time, and makes intuitive sense. Diagonal
structured estimators are given the least weight, probably because the true covariance matrix

is far from being diagonal. The structured estimators that have the most free parameters are

"'The number of stocks N grows from 340 in 1936 to 1105 in 1992. The number of time periods T is 120
(ten years of monthly data).
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given the highest weights, probably because they are the least biased. Qualitative evidence
from Figure F-7 is very reassuring about the estimators of shrinkage weights, which are
among our main contributions.

The most important question about the empirical properties of our method is: Does
shrinkage help minimize variance? Table E.1 provides evidence that it does. The table shows
the ex-post standard deviation of the ex-ante unconstrained minimum variance portfolio. For
all five structured estimators, shrinkage yields portfolios with significantly lower variance.
In some cases, variance diminishes a lot.

These results might be criticized as relying only on the unconstrained minimum variance
portfolio. Therefore, for each structured estimator, we consider three portfolios: zero beta
and size — 1; unit beta and size —1; zero beta and unit size.'> If an investor believed that
returns are driven by beta and/or size, she would select some combination of these three
portfolios. Then we give the benefit of hindsight to structured estimators, but only to them.
That is, we choose the combination of these three portfolios with the lowest variance based
on ex-post variances and covariances. We compare it to the ex-ante minimum variance
portfolio from the corresponding shrinkage estimator. This is unfair because hindsight is
such a strong advantage. It biases our results towards not finding that shrinkage helps
reduce variance.

Results are in Table E.2. Again, all five shrinkage estimators (without hindsight) yield
portfolios with lower variance than their corresponding structured estimators do (even with
hindsight). In this sense, it can be said that our method yields portfolios with lower
variance than could possibly be attained before. Table E.2 demonstrates empirically that
our estimator E achieves its goal: it helps portfolio selection minimize variance.

Portfoiios with lower variance than was previously possible open a new investment
opportunity. From an economic perspective, it is interesting to know whether this new
opportunity is attractive: Does it let investors improve their risk-return tradeoff? The risk-

return tradeoff can be summarized by the Sharpe ratio: mean divided by standard deviation

12Remember that size one (minus one) means ten times larger (smaller) market capitalization than market
average.
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of portfolio returns.'

Figure F-8 plots the ex-post means and standard deviations of the ex-ante minimum
variance portfolios constrained to have a specified beta between zero and one, and size zero.
On each graph, portfolios obtained from a structured estimator are plotted as a dashed line,
together with portfolios from the corresponding shrinkage estimator as a solid line. As seen
above, the solid line ventures further into low-risk territory than the dashed line. However,
the risk-return tradeoff does not seem to improve much. The dotted line, whose slope is
the maximum Sharpe ratio of all the portfolios on the figure, is practically tangent to both
the solid line of shrinkage estimator portfolios and the dashed line of structured estimator
portfolios.

This is especially true when X .s given by the single index model, which is the structured
estimator closest to what actual investors would use. For the other Is, our interpretation is
that combining a structured estimator with the sample covariance matrix goes a long way
towards fixing its intrinsic flaws, if any exist.

Overall, the message is that low risk portfolios are pe- .lized by low returns. They do not
offer more attractive investment opportunities. While this may sound a little disappointing
to a practitioner, it is on the contrary very satisfying for an economist. In equilibrium,
there should be no easy and permanent way to attain an abnormally favorable risk-return
tradeoff. It is rather remarkable that agents priced fairly the low-risk portfolios identified
in this chapter... even long before they were identified! This can be interpreted as strong
support for equilibrium theory of risk-return tradeoff.

Since a particular version of this theory, the Capital Asset Pricing Model (CAPM),
has recently been challenged on empirical grounds, it is natural to extract from shrinkage

covariance matrix estimators quantitative evidence on this subject beyond Figure F-8.

1.4.3 Testing an Implication of the CAPM

The CAPM implies, among other things, a positive relationship between returns and betas.

A familiar method to test this is to run a cross-sectional regression of returns on betas:

13Returns are in excess of the riskfree rate.
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the CAPvi predicts a positive slope. As Fama (1970) clearly explains, this is equivalent
to forming minimum variance portfolios with betas of one and zero respectively, and then
testing whether they have different mean returns. This brings back CAPM tests to portfolio
selection, where shrinkage covariance matrix estimators can be used.

Most existing tests run Ordinary Least Squares (OLS) regressions. This corresponds
to using the structured estimator £ = i/ for portfolio selection. No doubt it can be
replaced by an improved estimator of the covariance matrix. This corresponds to running
Generalized Least Squares (GLS) regressions. Amihud, Christensen and Mendelson (1994)
are among the few who run GLS. The problem is that they allow themselves to “*peck into
the future” to estimate the covariance matrix. Their test is not predictive. Its interpretation
is not straightforward, because real-life investors cannot peek into the future. Furthermore,
the ex-post returns that they report are not truly ex-post because they come from a period
that has already been used to estimate the covariance matrix. This feature can bias standard
errors towards zero, t-statistics away from zero, and tests of the CAPM towards finding a
significantly positive slope. We avoid these problems by running a predictive test.

Another difficulty is estimating betas. Since beta estimates contain error, the largest
ones are biased upwards, and the smallest ones downwards, by now a familiar phenomenon.
Some authors aggregate stocks into portfolios, on the assumption that betas can be estimated
more accurately for portfolios. Typically, portfolios are formed by ranking stocks on the
basis of their betas estimated over o given period, then portfolio betas are estimated over
a later period. This ensures that betzs vary across portfolios, but prevents portfolio beta
estimates from being biased. What this procedure actually does is shrink beta estimates
together.

Since shrinkage is the general answer to such problems, why not apply the technique
of Section 1.3?7 As it turns out, there is a direct correspondence between shrinking sample
eigenvalues when T and N both go to infinity, and shrinking beta estimates (or sample
means) when T is fixed and N goes to infinity. Thus, the asymptotic linear shrinkage
developed in Sections 1.3.1-1.3.2 can be applied to betas too. However, linear shrinkage
has no impact on t-statistics of regression slopes: it only changes the intercept. In other

words, if the bias of betas is nearly linear, then there is little reason to fix it. For this reason,
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we do not elaborate on this point here, and work with unadjusted betas. This more naive
approach is less arbitrary than forming portfolios, and —- if anything — makes it harder to
find a significant relationship between returns and betas.

Previous OLS regressions of returns on betas found a positive slope, but with sonie
serious limitations. First, it is not always statistically significant. Second, Tinic and West
(1984) show that the return-beta relationship weakens substantially if ihe month of January
is excluded from the period. Also, Lakonishok and Shapiro (1986) find that it disappecars
if size is included in the regression. Finally, Fama and French (1992) report that it flattens
out over the period 1963-1992.

Using the same database as these authors, we reproduce their OLS results in Table E.3.
The t-statistic for significance of the slope of returns on betas is 1.03 over the full period
1936-1992. It goes down to -0.33 if January is excluded, to 0.17 if size is included, and to
0.60 over 1963-1992. Actual results may differ somewhat from previously published ones,
but the conclusions are identical.

Now, we change only one step: instead of using the structured cstimator £ = i/ for
portfolio selection, we use a shrinkage estimator. This corresponds to upgrading from
OLS to GLS. In Table E.4, we report the results obtained with the shrinkage estimator
corresponding to the single index model, since this is the best-known structured estimator
among the ones in Appendix B. The t-statistic for significance of the slope of returns on
betas is now 1.91 over the full period 1936-1992. It is statistically significant at the 5%
level against a one-sided alternative. It only goes down to 1.62 if January is excluded, to
1.44 if size is included, and to 1.16 over 1963-1992. This relationship is much more robust
than under OLS."*

The change comes from two sources: standard deviations go down, because GLS is
more efficient than OLS, and slope estimates go up. Kandel and Stambaugh (1994) explain
theoretically why this should be anticipated. They show that OLS slope estimates can be

more sensitive than GLS to misspecification of the market proxy used to estimate betas.

'*The interested reader can find results for other asymptotic shrinkage estimators in Table E.5. All slope
estimates are positive. The results that we choose to comment are neither the weakest nor the strongest, and
are close to another structured estimator’s results. We believe that they are the most credible.
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In conclusion, the first predictive GLS cross-sectional regression of stock returns on
betas, conducted thanks to the asymptotic linear shrinkage estimator of the covariance
matrix developed in Section 1.3, finds a more significant and robust positive rclationship
between returns and betas than similar OLS regressions do. The relationship is not as strong
as theory suggests, but this is hardly surprising given the error of beta estimates. Predictive
GLS regressions support the existence of a positive linear rzlationship between returns and

betas.

1.5 Conclusion

Directions for future research include using the spectral theory of large-dimensional random
matrices to test for the number of factors in the APT; translating asymptotic shrinkage tech-
niques to beta estimation; searching for the best frequency at which to sample stock returns
for covariance matrix estimation; accounting for some type of Autoregressive Conditional
Heteroskedasticity {ARCH) effects; bringing improved covariance matrix estimators to

other areas of empirical stock market finance such as event studies.

In this chapter, we demonstrate the importance of a seldom-used framework for covari-
ance matrix estimation: letting the number of variables and the number of observations go to
infinity together. This framework is particularly well-suited for stock returns data, because
the number of stocks traded in the stock market is at least of the same order of magnitude
as the number of time periods. The covariance matrix of stock returns is important becausc
it is a necessary input into portfolio selection, a central method in stock market finance.

We show that, in this framework, the sample covariance matrix is not well-behaved,
especially through its eigenvalues. This work has potential implications for tests of the num-
ber of factors in the APT based on sample covariance matrix eigenvalues. We also show
that it is easy to improve over the sample covariance matrix by shrinking its eigenvalues to-
gether in an asymptotically optimal way. In particular, this yields the first rotation-invariant
estimator of the inverse of the covariance matrix to retain some theoretical motivation when

variables outnumber observations. Generalizations provide attractive asymptotic extensions
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to familiar finite sample Bayesian and decision theory methods.

Monte-Carlo simulations reveal that peak asymptotic performance is attained as soon
as the number of observations and the number of variables become of order 20 to 40. The
asymptotic shrinkage estimator has lower mean squared error than the sample covariance
matrix in all situations simulated. It compares favorably overall in terms of mean squared
error with existing finite sample estimators. The asymptotic shrinkage estimator has the
potential to replace the sample covariance matrix as an all-purpose estimator.

More importantly for Finance, this asymptotic shrinkage technology helps portfolio
selection minimize variance, as tests on historical data show. It opens new investment
opportunities: equity portfolios with lower risk than was previously possible. These
opportunities, however, are only slightly more attractive than existing ones because lower
risk is penalized by lower return. In a related investigation of the risk-return tradeoff, the
improved covariance matrix estimator is used to perform the first predictive GLS cross-
sectional regression of returns on betas. This test concludes that the positive relationship
between returns and betas predicted by the CAPM is statistically significant and robust, in

stark contrast with tests based on less efficient OLS regressions.
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Chapter 2

The é-Arbitrage Pricing Theory

This chapter starts from three observations about the Arbitrage Pricing Theory (APT).
First, the APT’s assumption of no limiting arbitrage can be strengthened to characterize
how closely beta pricing is approximated in a finite economy. Second, the stock market’s
risk structure does not show a clear-cut frontier that would validate the theoretical distinction
between factors and residuals. Third, accounting for estimation error of factor risk premia,
the optimal number of factors is determined by a trade-off between accuracy and parsimony
in the beta pricing equation.

Based on these observations, I build a flexible and realistic model of the trade-off
between risk and return in the stock market that capitalizes on previous research and
opens interesting avenues for empirical work. The key assumption is to rule out the
existence of -arbitrage opportunities, defined as portfolios whose Sharpe measure exceeds

the predetermined level 6.

2.1 Introduction

The Arbitrage Pricing Theory (APT) yields an approximate beta pricing equation. However,
its traditional form does not give researchers any way to check how closely the apprcxima-
tion holds in their economy. It is because the definition of limiting arbitrage (Ross, 1976,
Huberman, 1982) is strong enough to obtain that the mean squared error on the beta pricing

equation vanishes, but not strong enough to obtain the rare at which it vanishes. I propose
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modifying the APT by ruling out §-arbitrage opportunities, defined as portfolios whose
Sharpe measure exceeds a certain level § chosen by the researcher.! Realistic choices for 4
are discussed. Ruling out §-arbitrage is stri;nger than the APT’s traditional assumption, but
generally weaker than the Capital Asset Pricing Model’s (CAPM). I give a simple illustra-
tive model where ruling out §-arbitrage follows from more primitive economic arguments.
Stylized facts about the behavior of investors generally support this assumption.

To emphasize that the value of § must be specified upfront, I call the strengthened model:
d-Arbitrage Pricing Theory. The §-APT gives researchers a way to check how closely the
approximate beta pricing equation holds in their economy. Unlike the APT, it still works
fine if this error is not negligible, which may very well be the case in practice. This model
admits as limiting cases: the APT with strict factor structure, the APT with approximate
factor structure, the exact APT with noiscless residuals, and the CAPM. Some critics have
claimed that the APT lacks economic content, but the §-APT cannot be so criticized.

In the §-APT, as opposed to the APT, it is not Nature but each researcher who chooses
the factor structure. This is a desirable feature since researchers do disagree on the number
and on the identity of “the” factors. Ignoring estimation error, it is always beneficial to
project exogenous factors onto the space of portfolio returns. Optimal factors are returns
on portfolios whose weights are eigenvectors corresponding to the top eigenvalues of the
covariance matrix of stock returns.

I also examine the impact of estimation error. There is reason to believe that standard
statistical techniques cannot distinguish factors from residuals in a predictive sense. In
particular, it seems that the maximum residual eigenvalue is not as small as usually thought.
Finally, accounting for estimation error in factor risk premia, the optimal number of factors
is determined by a trade-off between accuracy and parsimony in the beta pricing equation.

In summary, this chapter proposes a more flexible and more realistic model of the
familiar trade-off between risk and return. It opens new and promising directions for futui
empirical research.

Section 2.2 reviews the Arbitrage Pricing Theory. Section 2.3 defines d-arbitrage.

'"The Sharpe measure of a portfolio is the ratio of the expectation to the standard deviation of its return in
excess of the riskfree rate.
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Section 2.4 presents the §-Arbitrage Pricing Theory. Section 2.5 discusses the choice of

factors. Section 2.6 evaluates the impact of estimation error. Section 2.7 concludes.

2.2 Arbitrage Pricing Theory

The APT is reviewed and a fundamental limitation is identified.

2.2.1 Review of the APT

Following Shanken (1985), I consider that equilibrium derivations of the APT are a breed
apart. They are outside the scope of this chapter.

Asset returns are generated by the factor model:

i =Bufi+ ...+ Bixfx + &, (2.1
where 7; is the return on the i'" asset (i = 1,. .., N) in excess of the riskfree rate, f, ey f K
are factors, fG;, . .., Bik are factor loadings (also called betas), and €; is the residual. By

definition, residuals are uncorrelated with factors.

Let X denote the largest eigenvalue of the covariance matrix of the residuals (¢;)i=;,. n-
Intuitively, if X is not large, then residuals do not explain much of the risk: factors explain
a lot of it.

Let & denote the largest Sharpe measure in the economy. The Sharpe measure of a
portfolio is defined as the ratio of the expectation to the standard deviation of its return in
excess of the riskfree rate. Intuitively, if § is not large, then there is a tight relationship

between risk and return.

In the APT, the beta pricing equation:
E[fil = Bumi + ... + BikTk (2.2)

holds approximately for an appropriate choice of factor risk premia 7y, ..., 7. It means that

betas drive most of the expected return in the economy. The mean squared approximation
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error in Equation (2.2) is:
2 : l N ~ 2
€= mn & Z_;(E [fil = Bam — ... — BikTk)" . (2.3)

If € can be neglected, then beta pricing is a reliable approximation.

The APT is the following result.2

Theorem 11 (APT) If the number of assets N goes to infinity while the maximum residual
eigenvalue X and the maximum Sharpe measure § remain bounded, then the mean squared

approximation error 2 of the beta pricing equation (2.2) vanishes.

This succinct review masks some of the subtler points involved in allowing the number of
assets to go to infinity. See Ross (1976) or Chamberlain and Rothschild (1983) (hereafter

CR) for more detailed presentations of the APT.

2.2.2 Limitation of the APT

The APT is an asymptotic theory. Its implications are for N going to infinity: it says
nothing about a finite economy. In practice, only a finite number of stocks are traded, so
some critics wonder whether the APT is at all usetul.

Superficially, one can write off their concern as an elementary misunderstanding of
asymptotics: if there are enough stocks in the economy for the APT’s beta pricing equation
to be “approximately” true, then the APT is useful. At a deeper level, however, these critics
may just be asking for evidence that the APT is “approximately” true.

In other words, for the APT to have practical relevance, it cannot just state that the mecan
squared approximation error €2 on the beta pricing equation (2.2) converges to zero. The
APT must also say ar what rate € converges to zero, so that critics can check how close the
approximation is in reality.

Let us re-examine CR’s proof of convergence to determine the convergence rate. The

crucial equation in the proof is:

~
>
Sl
[$)

(2.4)

=

2Proofs are in the Appendix.
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Therefore critics of the APT should plug in reasonable values for A, § and N, then check
whether these values imply a tight enough error bound.

Getting the number of assets N is obviously no problem. The maximum residual eigen-
value ) can be directly estimated from the data, in principle. There are some difficulties:
the location of the residual space is not clear (see Section 2.5), and estimation error may be
severe (see Section 2.6). But at least it is theoretically feasible.

Now we are facing the main problem: the APT says nothing about the maximum Sharpe
measure § (except that it is finite). Since the APT does not specify 4, it prevents us from
checking how closely the beta pricing equation (2.2) holds in our economy.

An asymptotic approximation without its convergence rate is useless in a finite economy.

This is a severe, fundamental limitation of the APT. It was already noted by Shanken
(1982). Thankfully, the way to get around it has been known intuitively since the origin of

the APT. I formalize it below.

2.3 J-Arbitrage

Alternative definitions of arbitrage are reviewed and a new one is proposed. Its economic
justification is discussed qualitatively and illustrated by a quantitative model. Some empir-

ical evidence is presented and values are recommended for the key parameter.

2.3.1 Definitions of Arbitrage

Ross’s original intention was to demonstrate that the trade-off between risk and return did
not require the CAPM’s strong equilibrium assumption. More generally, it is characteristic
of Finance (as opposed to Economics) to prove results under an assumption weaker than
equilibrium. This assumption is usually that no arbitrage opportunities exist.

An arbitrage opportunity can be defined as a riskfree investment that earns more than
the riskfree rate. Its return in excess of the riskfree rate has strictly positive expectation but
zero standard deviation. In the mean-variance world characteristic of stock market studies,
an arbitrage opportunity is an investment with infirite Sharpe measure.

Ruling out arbitrage opportunities is a very weak restriction on agent behavior, hence
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a very credible one. However, it is so weak that it has no implication for the economy in
Section 2.2.1.3 Therefore it has to be strengthened. The APT rules out /imiting arbitrage
opportunities.

A limiting arbitrage opportunity is a sequence of portfolios whose Sharpe measures go
to infinity. Ruling out limiting arbitrage is equivalent to assuming that the maximum Sharpe
measure J is finite. Exactly how finite is not said. This is the root of the problem outlined
above.

The solution was already indicated by Ross (1976): in a back-of-the-envelope calcu-
lation, he assumes that the maximum squared Sharpe measure 5" is less than twice the
squared Sharpe measure of a market index. It is a small step from saying that § is finite but
unspecified to saying that § is finite and specifying it. Yet this step generates a new notion
of arbitrage and fixes the fundamental problem of the APT.

More generally, any empiricist using the approximate beta pricing equation makes the
leap of faith that it is accurate enough for practical purposes. Implicit here is the assumption
that the maximum Sharpe measure in the economy is not large enough to undermine the
accuracy of beta pricing. Therefore the model formally developed below is nothing more

than the one that proponents of the APT had in the back of their minds all along.

2.3.2 J-Arbitrage
I give a definition of arbitrage that differs from the APT’s limiting arbitrage.

Definition 3 A d-arbitrage opportunity is a portfolio whose Sharpe measure is strictly

above §.

The value of § is specified a priori by the economist. Different economists may legitimately
disagree on the value of 4. I will talk about §-arbitrage in general terms, so that everyone
has a chance to replace § by the value that they deem appropriate. 1 will discuss what values
I deem appropriate in Section 2.3.6.

The APT rules out the existence of limiting arbitrage opportunities. I need a stronger

assumption.

3Except if the covariance matrix of stock returns is singular, a case treated by Ross (1978) but not realistic.
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Assumption 4 There are no §-arbitrage opportunities.

An asset pricing theory based on Assumption 4 can be seen as a whole family of models
indexed by 6.

If 4, < 6, then ruling out J,-arbitrage implies ruling out d,-arbitrage. The strength of
Assumption 4 decreases in 6. Therefore the model indexed by 4, is embedded into the
model indexed by §,. The strength of the conclusions of the models decreases in 4.

In the limit as § goes to infinity, Assumption 4 converges to the assumption of no limiting
arbitrage. Therefore the union of all the models in the family is nothing else than the APT
itself (if the appropriate auxiliary assumptions are added).

In the opposite direction, § cannot be set beiow the Sharpe measure of any particular
portfolio in the economy. For example, § cannot be set below the Sharpe measure da; of
the market portfolio. In the limit if § = §,s, then Assumption 4 states that the market
portfolio is mean-variance efficient. Therefore the intersection of all the models in the
family is nothing else than the CAPM itself (again if the appropriate auxiliary assumptions
are added).

In conclusion, ruling out §-arbitrage is a flexible way to bridge the gap between two
important economic assumptions: no-arbitrage and equilibrium. The corresponding asset
pricing theory bridges the gap between the APT and the CAPM. This formalism lets
economists modulate at will the strength of their restriction on investor behavior, and reach
a conclusion of accordingly variable strength. The next section examines in more detail the

economic justification of Assumption 4.

2.3.3 Economic Justification

The Sharpe measure is an economically justified criterion for the attractiveness of a portfolio
if agents only care about risk (negatively) and return (positively), and if riskfree borrowing
and lending are available at the same rate. In such a world, mean-variance efficiency is
attained by investing in the safe asset and in the portfolio of risky assets with the highest
Sharpe measure. As a consequence, every agent holds a scalar multiple of the same

portfolio of risky assets: the one with maximum Sharpe measure. By aggregation, the
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market portfolio must have maximum Sharpe measure, as the well-known proof of the
CAPM goes.

The disturbing point is that, in reality, all agents do not hold the same portfolio. Surely
then they must care about (personal) objectives other than risk and return. In this case,
there is little reason to believe that the market portfolio has maximum Sharpe measure.
The portfolio with maximum Sharpe measure strictly dominates the market portfolio (in
combination with the riskless asset), yet some agents choose not to hold it for personal
reasons.

How high can the maximum Sharpe measure be before the corresponding portfolio
becomes overpoweringly attractive? Arbitrarily high? Certainly not! There has to be a
limit on the intensity of the personal objectives that distract agents away from maximizing
their Sharpe measure. If there is, it implies a limit on the maximum Sharpe measure that
can prevail in equilibrium. If an investment opportunity’s Sharpe measure is too attractive,
distractions will not be sufficient to keep agents from arbitraging it away. The less agents
care about other objectives, the lower the maximum Sharpe measure. If agents do not care
at all about non-mean-variance objectives, then the maximum Sharpe measure is as low as
the market portfolio’s (CAPM).

Therefore, qualitatively, d-arbitrage is ruled out if there is an upper limit on the intensity
of personal objectives that distract agents away from looking at Sharpe measures. It is
certainly not the only or even the best way to transform a limit of this kind into a quantitative
restriction. Particular specifications of personal objectives may lead to different restrictions.
But one important advantage of Assumption 4 is that it makes minimal assumptions on the
nature of these objectives, about which so little is known.

In summary, ruling out §-arbitrage is a general restriction with powerful implications
that characterizes the intensity, rather than the nature, of the reasons why different investors

hold different portfolios.
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2.3.4 Non-Marketable Assets

The above discussion was purely qualitative, but it can also be pursued quantitatively.
Consider a specific example of what might distract agents away from their Sharpe measures.
Roll (1977) argues that the existence of assets outside the stock market makes it difficult
to conduct asset pricing in the stock market in isolation. The risk of non-marketable assets
such as human capital may influence the pricing of marketable assets such as stocks.

In the following example, a bound on the riskiness of non-marketable assets implies a

bound on the maximum Sharpe measure in the stock market.

Theorem 12 (Equilibrium with Non-Marketable Assets) Assume that agents have con-
stant absolute risk aversion and that future asset values are normally distributed. Let
o3, (respectively o%,,) denote the variance of the future dollar value of all marketable
(resp. non-marketable) assets in the economy. If the correlation between marketable and
non-marketable assets is non-negative then, in equilibrium, the maximum Sharpe measure

in the market § verifies:

2
5 < (1 + M ) , (2.5)
OM

where &, is the Sharpe measure of the market portfolio.

The notion of equilibrium here differs from the CAPM’s because agents pursue objectives
besides mean-variance efficiency of marketable assets.

The assumption that the aggregate value of human capital has non-negative correlation
with the aggregate value of companies in the stock market is at least plausible. As an
illustration, if the variance of the future value of human capital is no greater than the
variance of the future value of the market portfolio, then the maximum squared Sharpe

=2
measure § cannot exceed the bound §2 = 262,.

2.3.5 Empirical Evidence

Peter Lynch is reputed for his outstanding tenure as manager of the Fidelity Magellan
mutual fund. From 1977 to 1990, his fund had about one and a half times the Sharpe

measure of a market index. In our model, we expect investors to flock massively to such
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investment opportunities, thereby disrupting prices. Did they flock to Fidelity Magellan?
Yes: funds under management grew from $20 million in 1977 to $13 billicn in 1990! Did
they disrupt prices? It is not as easy to assess it directly, if only because Peter Lynch
followed a dynamic strategy with frequent rebalancing. However, the sheer size of his fund
severely limited the fraction invested in any given stock. It became more time-consuming
for him over the years to amass the private information necessary to pick enough winners to
sustain his performance. For compensation, he charged steep commission fees that defiated
his shareholders’ Sharpe measure. Eventually, his commission did not compensate him
enough for the time spent at work and he resigned, taking his talent away from the fund.
This story is anecdotal evidence that Assumption 4 is a sensible description of the world.
MacKinlay (1993) and Daniel and Titman (1995) argue that non-risk characteristics
of stocks are priced. Size and book-to-market are often cited as examples. This is inter-
esting evidence that appears to violate Assumption 4. As these authors point out, if the
phenomenon is real and persists, then approximate arbitrage opportunities will exist. But
their results do not, alone, constitute evidence contrary to Assumption 4. Contrary evidence
would be if mutual funds exploiting this approximate arbitrage were set up, convinced the
public that they have high Sharpe measures and, in spite of that, remained terribly unpop-
ular! Assumption 4 restricts investor behavior, so investor behavior alone can disprove it.
I doubt that high Sharpe measure mutual funds loading on priced non-risk characteristics
can remain unpopular for long, if they perform that well. And if they do become popular,
they wil! find it harder to maintain their performance. For example, the size effect seems to
have disappeared a few years after its discovery. I am confident that any apparent violation

of Assumption 4, as soon as it is established beyond a doubt, must quickly go away.

2.3.6 Choiceof 4

Ross’s (1976, p. 354) back-of-the-envelope calculation, Section 2.3.4, the example of
Fidelity Magellan and MacKinlay’s (1993, Section 5.2) risk-based alternative specification
all suggest that a reasonable choice for 6> might be in the neighborhood of twice the squared

Sharpe measure 43, of the market portfolio. Since the spirit of the §-APT requires that I
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recommend a specific value for 8, at this stage I choose § = /24,,.

Of course, disagreement is legitimate. CAPM theorists insist that § mast be equal to dy,.
Cuaanken (1992) believes that only a Sharpe measure of the order of 150 4y, comes close
to the intuitive notion of arbitrage. Both positions are somewhat extreme. The question
is: as an investor, would you go out of your way to make an investment earning the same
expected return as the market with half the variance? I believe that most investors would

answer positively.

2.4 J)-Arbitrage Pricing Theory

The assumption of no §-arbitrage generates a modified version of the APT. Its relation
to existing asset pricing theories, economic contents and testability are examined in this

section.

2.4.1 Formulation

Recall the universe described in Section 2.2.1 before Theorem 11. Its key elements are
the number of assets NV, the maximum residual eigenvalue X, and the maximum Sharpe
measure 6.

Factors can be projected onto asset returns:
fk =MmgT+ ..o NN TN+ Ty (2.6)

where the projection residual 7j is uncorrelated with asset returns. The coefficients iy,
are weights of factor-mimicking portfolios. The proiection residual 7, has zero variance if
and only if the k™ factor is spanned by asset returns. Generally, this is not the case. Let
dr denote the maximum Sharpe measure among the portfolios that are spanned by the i
factor-mimicking portfolios.

This universe is entirely non-restrictive. In particular, the number of assets N can be
anything and does not go to infinity. No economic assumption has been made (yet). In this

finite economy, the §-Arbitrage Pricing Theory is the following result.
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Theorem 13 (6-APT) With the above notation, if Assumption 4 holds, then the mean

squared error €? on the approximate beta pricing equation (2.2) verifies:
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Intuitively: If factors explain most of the risk in the economy (A small), if approximate
arbitrage opportunities are ruled out (4 not large), and if many assets trade (N large), then
betas drive most of the expected return in the economy (¢ small).

Theorem 13 captures the intuition of Ross’s (1976) and CR’s Arbitrage Pricing Theory.
In addition, thanks to the strength of Assumption 4, Equation (2.7) shows how closely beta
pricing holds in any given finite economy.

The presence of §r makes the bound sharper than the one in Equation (2.4) copied from
CR. Shanken (1982) proves a similar mathematical result, but does not place it within a
formal economic theory.

The intuition behind the 6-APT is not new, since Ross (1976) already plugged a specific
value into §. The mathematics are not new either, since they are a minor rewriting of CR's
result. Shanken (1992) even goes so far as to bring the intuition and the maths together
to call for empirical work on the relationship between deviations from beta pricing and
approximate arbitrage opportunities.

But this is the first time that the definitions of 4-arbitrage and 4-Arbitrage Pricing Theory
are given. My contribution is to show that setting § to a specific value is more than an
eloquent illustration or an empirical convenience: it is an integral pan of the theory that
guarantees its relevance and was previously missing.

It could be said that the intuition for my work is not novel because it was implicitly
assumed in every discussion of the practical relevance of the APT. I gladly admit that
my only contribution is to make explicit an idea that was previously implicit. But this
contribution changes the focus, tie interpretation and the span of the theory. The major
advantage is that important empirical issues that were previously outside the APT can now

be treated inside the §-APT.
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2.4.2 Relation to Existing Asset Pricing Theories

Equation (2.7) can be taken to the limit in various ways.

The pricing error € vanishes as N goes to infinity. This is the traditional APT result.*
However Assumption 4 buys us more than that: we also know at what rate the error vanishes.
If different people disagree on 4, then they disagree on the rate, even though they still agree
that € vanishes. The only thing that is implied by every choice of § is that £ vanishes, which
is the traditional APT result. In practice, it seems likely that the research community will
at least reach a consensus on a (finite) range for §, which would avoid going back to the
traditional APT.

The original objective of §-arbitrage was to allow asymptotic analysis of the rate of
convergence to beta pricing. This objective has been fulfilled. However, since the bound
(2.7) holds not just asymptotically but also in any finite economy, there is no need to invoke
the original asymptotic formalism anymore. Again, the 6-APT is not an asymptotic theory.

Notice that the pricing error € vanishes as the maximum residual eigenvalue A goes to
zero. This corresponds to the exact pricing result in an economy with noiseless residuals
proven by Ross (1978).

Also, setting the number of factors to one and taking the single factor as the return
on the market portfolio ensures that 45 is equal to the Sharpe measure §,, of the market
portfolio. Then, if economists stop allowing investors to pursue other objectives than the
Sharpe measure, the § from Assumption 4 goes to d,y, therefore & — &, vanishes, and so
does the error in the beta pricing equation. This is the CAPM result.

Previous versions of the APT and the CAPM were designed to give conditions under
which the error € is negligible. By contrast, the 6-APT works with any value of ¢, negligible
ornot. This could prove adecisive advantage if empirical results show that € is not negligible,
which they may very well do. In this case, it woulc be preferable to take ¢ into account
explicitly and know its order of magnitude, as in the 6-APT, rather than neglect it becausc

some other version of the theory cannot accommodate it.

4Shanken (1992, Section II) reports this connection.

58



In conclusion, the §-Arbitrage Pricing Theory is flexible enough to admit existing versions
of the APT and the CAPM as limit cases. But the drawback of these limit cases is that
they are, strictly speaking, unrealistic. A more realistic approach is to evaluate whether,
together, the large number of assets in the economy, the low risk of residuals, and the limit
on acceptable Sharpe measures combine to make a beta pricing equation accurate. Onc
of the major contributions of this chapter is to develop a theoretical framework where this

approach is permitted.

2.4.3 Economic Contents

One of Roll’s (1977) contributions is to dissect the CAPM into:

1. The mathematical equivalence between the mean-variance efficiency of the market

portfolio and the equation linking expected returns to betas;

2. The economic assumption that the market portfolio is mean-variance efficient.
I claim that the §-APT has the same structure. It can be decomposed into:

1. The mathematical equivalence in Theorem 13 between bounding the maximum

Sharpe measure and bounding the error of the beta pricing equation (2.2);

2. The economic assumption that places a specific upper bound on the maximum Sharpe

measure.

As Shanken (1992) points out, Theorem 13 is a mathematical tautology. Shanken
(1982) concludes from a repackaging argument that the APT is an empty theory with zero
economic content. The above interpretation makes it clear that these are not valid criticisms
of the §-APT. The 4-APT asks economists to take a stand on what Sharpe measures are
reasonable. This in turn translates into a beta pricing equation, which is more or less
accurate, depending on how assertive economists are about the maximum Sharpe measure.
In the limit, by setting the maximum Sharpe measure equal to the Sharpe measure of the
market portfolio, the §-APT can be turned into the CAPM, a theory of (perhaps excessive
but) surely undisputed economic content. To sum up, the economic content in the §-APT

is substantial and it is... 4!
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244 Testability

To push this reasoning one step further, can 4 be mechanically estimated, bypassing the nced
for economic judgment? Strictly speaking, only 4 could be estimated, and the economist
(not the statistician) would bear the ultimate responsibility for plugging the estimate into 4.
But the question is stiil interesting.

Such estimation would require knowledge of expected stock returns. If expected returns
are known, then the beta pricing equation is not useful. Normally, expected stock returns
are not known, and Equation (2.2) serves to compute them from betas and factor risk
premia, which are known (or at least estimated with less error). If everything is known,
then verifying that the mathematical tautology (2.7) holds is a waste of time.

Conceivably, § could be estimated over the past, the estimate plugged into 4, and
Equation (2.2) used to make future investments. Then one could hesitate between using
the historical estimate of § and using the value of & suggested by economic judgment (sce
Section 2.3.6). To some extent, economic judgment relies on accumulated knowledge about
agent behavior and, as such, is just another historical estimate! Conversely, the belicf that
investor behavior will not change from the estimation period to the investment period (even
if 4-arbitrage opportunities are publicly reported in the meantime) is itself an economic
judgment...

In this particular case, it would come as no surprise if the ex post knowledge that, say,
size and book-to-market commanded non-risk based premia over 1963-1990, generated an
estimate of & higher than the é that I recommend in Section 2.3.6 (see MacKinlay, 1993).
Which one to believe: the high estimate or the low recommendation? It all hinges on
whether non-risk based premia can persist. Over long horizons, I would put more faith in
the efficacy of §-arbitrageurs than in the perpetual reappearance of free lunches.

This discussion shows that economic judgment is essential in the choice of 4 and cannot
be totally replaced by an automatic estimation procedure. After all, it is the ex ante § that
we are concerned with, and econcmic thinking sheds more light on ex ante parameters than
ex post data sometimes do.

To sum up, Assumption 4 is testable: for example, MacKinlay (1993) tests it. However,
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the conclusions of such tests has to be carefully moderated by economic judgment.

Should convincing empirical evidence accumulate against the version of Assumption
4 recommended in Section 2.3.6, the whole theory of §-APT does not fall apart. It would
suffice to raise the value of 4 until it conforms with this evidence, at the cost of weakening

the conclusions of the model.

2.5 Choice of Factors

The 6-APT provides a convenient framework to study one of the most controversial problems
about empirical applications of the APT: the choice of factors. Contrary to the APT, the
8-APT does not assume that the factors are uniquely determined by the risk structure of
the stock market. Factors could be anything. Of course, not all sets of factors are created
equal. The number and the identity of the factors matter through the maximum residual

eigenvalue X. The rule is: the lower the X, the more accurate beta pricing is.

2.5.1 Factors vs. Residuals

A distinction central to the APT separates factors from residuals. In Ross’s (1976) APT
with strict factor structure, factors are pervasive while residuals are idiosyncratic. In
Ross’s (1978) noiseless APT, factors are risky while residuals are riskless. In Chamberlain
and Rothschild’s (1983) APT with approximate factor structure, factors correspond to
eigenvalues going to infinity and residuals to bounded eigenvalues.

I argue that data do not support the theoretical distinction between factors and residuals.
True, market risk is an important source of risk in the stock market and, as such, fits well
the theoretical definition of a factor. Also true, some sources of risk have such minute
influence on stock returns that they can be called residuals. But there is almost a continuum
of sources of risk filling the gap between these two extremes. Observed risk structure docs
not show a clean frontier between two groups that would embody the theoretical distinction
between factois and residuals.

Figure F-10 plots the sorted eigenvalues of the covariance matrix of returns on stocks

trading on New York Stock Exchange (NYSE) from 1988 to 1993. The first eigenvalue is
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much larger than the last ones, but no evident gap jumps to the eye.

Notice that the difference between consecutive eigenvalues fades away as eigenvalues
become smaller. If we simply want the largest possible gap, we must call the first eigenvalue
a factor and all the other ones residuals; but then residuals would explain more than 90%
of the total risk in the stock market, hardly an intuitive feature! Now, if we want to be
able to neglect the variance explained by residuals, we must have a very large number of
factors; but then the difference between the smallest factor and the largest residual becomes
uncomfortably small: did we get exactly the right number of factors, or one too few? or
one too many? can we tell?

This does not sound like a satisfactory way to detenuc the number of factors in the
APT, yet similar reasonings have been made in countless empirical studies of the question.
We should accept that Nature does not separate factors from residuals: researchers have to
do it themselves. Put another way, different researchers can legitimately disagree on what
“the” factors are. This may explain why researchers do in fact disagree.

The fact that researchers are free to choose the factors they want does not preclude some
choices from being better than others. This matter is discussed below and again in Section

2.6.3.

2.5.2 Exogenous Factors

What can determine the choice of factors? On the one hand, the more risk factors explain,
the lower A is, and the more binding Equation (2.7) is. On the other hand, the higher the
number of factors, the more trivial pricing equation (2.2) becomes: explaining 60 asscts
with 50 factors would be plain silly. Therefore we should choose factors to reduce A without
increasing K.

Let us start from an exogenously specified set of factors firooo fr. In general, they
are not spanned by asset returns. Remember that they can be projected onto the space of
portfolio returns, as in Equation (2.6). The projection of the A" factor is the return on the A"

mimicking portfolio. The following result shows that it is advantageous to replace factors

by mimicking portfolio returns.
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Theorem 14 Replacing factors by their projections onto asset returns reduces the maximum

eigenvalue of the covariance matrix of residuals.

This is an easy way to give more bite to the §-APT. In practice, this projection requires
the inverse of the covariance matrix of stock returns. If the number of stocks in the
cross-section exceeds the number of time-series observations, which is often the case, then
the usual estimator of the covariance matrix is not invertible. The asymptotic shrinkage
technique devised in the first chapter of this thesis gets around this problem and obtains a
covariance matrix estimator that is guaranteed to be always invertible. This estimator can

be used to project factors onto stock returns as in Theorem 14.

2.5.3 Covariance Matrix Eigenvectors

Holding the number of factors K fixed, how do we choose K factors to minimize A\? By
Theorem 14, optimal factors are returns on carefully chosen portfolios. But what portfolios?

The following theorem answers.

Theorem 15 Let the k™ factor be the return on the portfolio whose weight vector is the
eigenvector of the covariance matrix of asset returns corresponding to the k™ largest

eigenvalue. This choice of factors minimizes the largest residual eigenvalue ).

The way to give the most bite to the §-APT is to choose the factors associated with the
first K eigenvectors of the covariance matrix of asset returns. Researchers who rely on
exogenous factors (see e.g. Chen, Roll and Ross, 1986) should be aware that their residuals
might be very risky, which would in turn compromise the accuracy of their beta pricing

equation.

2.6 Estimation Error

Much of the work on the APT assumes that the mean vector and covariance matrix of stock
returns are known exactly. In reality, they are estimated with error. How does this affect
beta pricing? The 4-APT gives a convenient framework to start exploring this important

question.
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2.6.1 Forecasting Residual Space

First, the effect on §-arbitrageurs. These are the investors who locate the factor space and the
residual space, determine whether some residuals command high returns and, if so, invest
in them.’ It is the action of J-arbitrageurs that guarantees that residuals cannot consistently
earn high returns. These agents focus on residuals rather than factors because it would be
unlikely for any portfolio to earn returns so high that they exceed fair compensation for
factor risk.

How does estimation error prevent d-arbitrageurs from enforcing the §-APT? They have
to estimate the factors and the residual space in one period, then possibly invest in the most
attractive portfolio in the residual space over the next period. At a minimum, they have to
forecast where the factor space and the residual space will lie. If their forecast is always
wrong because of estimation error, they will soon take it into account and possibly reduce
their involvement in §-arbitrage.

For example, residuals should be uncorrelated with factors. But some portfolios in
the estimated residual space may turn out to have high correlations with factors over the
investment period. If d-arbitrageurs cannot weed out factor risk from their residuals, they
may stop trying to take advantage of residual returns for fear of unintentionally bearing
factor risk. Evidence that standard statistical techniques cannot discriminate factors from
residuals in a predictive way would cast serious doubts on the existence of d-arbitrageurs,
and on the §-APT altogether. This is an empirical question that will be expiored in future

research.

2.6.2 Maximum Residual Eigenvalue

Ideally, all factor eigenvalues should exceed all residual eigenvalues (see Theorem 15).
However, if the eigenstructure is estimated with error from historical data, this may not be
the case over the investment period. I conjecture that standard statistical techniques may not

be accurate enough to prevent the largest residual eigenvalue from exceeding the smal.est

3In the spirit of this chapter, a portfolio earns “high” return if it earns much more than fair compensation
for its risk, i.e. its Sharpe measure exceeds 4.



factor eigenvalue.

Empirical evidence supporting this conjecture would be the last nail in the coffin for
the idea that Nature separates factor risk from residual risk. In my opinion, a more realistic
position is that the risk structure of the stock market gives researchers the freedom to
disagree about the number and the identity of the factors. The §-APT, unlike the APT,
perfectly accommodates this position.

Even though the §-APT will suffer less than the APT if this conjecture is verified, it will
still suffer somewhat. The reason is that the accuracy of the beta pricing equation depends
on the maximum residual eigenvalue X that will prevail over the investment period. 1believe
that this value of X is rather high, possibly higher than the minimum factor eigenvalue, and
certainly higher than the maximum residual eigenvalue that prevailed over the estimation
period.

In summary, eigenstructure estimation error increases the error in the beta pricing
equation. Evaluating the severity of this effect is an urgent direction for future empirical

research.

2.6.3 Optimal Number of Factors

The 4-APT provides a convenient framework to determine the optimal number of factors.
Obviously, the first objective in choosing factors is to minimize ), the largest residual
eigenvalue. This can be accomplished by selecting more and more factors. In the limit,
selecting as many factors as there are assets yields A\ = 0, therefore the beta pricing equation
is perfectly accurate. However, this is hardly a reasonable choice.

There must be a way to penalize sets of factors that are not parsimonious. The basic
idea of the APT is that knowledge of the expected return on a few combinations of assets
(the factors) contains information about expected returns on all assets. The premise here is
that we know the expected returns on a few factors but not on all stocks. A more modest
statement is that estimating the mean returns on a few factors can be done more accurately
than estimating the mean returns on all individual stocks.

There are several rzasons why this might be the case. First, it is easier to estimate a
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few parameters than many parameters. Second, factors are less risky than stocks because
they are better diversified, so their mean return estimates have lower standard errors. Third,
if factor risk premia are characteristic of the economy as a whole, they may change more
slowly than individual stocks: companies are created and liquidated but the economy stays
the same.

A realistic way to encourage parsimony in choosing the number of factors is to take
into account explicitly estimation error of factor risk premia. Let us work in the universe of
Sections 2.2.1 and 2.4.1. Assume that factors are chosen optimally as in Theorem 15. The
k'™ factor is the return on the portfolio whose weight vector is the eigenvector corresponding
to the k™ largest eigenvalue of the covariance matrix of stock returns.

For convenience, I assume that the covariance structure is known exactly. This is rather
optimistic in view of Sections 2.6.1 and 2.6.2, but second moments of stock returns are
better known than first moments. One important reason is that, keeping the estimation
period fixed, infinitely increasing the sampling frequency yields consistency of estimators
of the second, but not the first, moments. For example, movirg from the monthly to the daily
database from the Center for Research in Security Prices (CRSP) over the same estimation
period increases the precision of the sample covariance matrix but not of the sample mean
vector of stock returns.®

Let T denote the number of observations available. I assume that they are independent
and identically distributed (iid). The 4™ factor risk premium 7 is estimated by the sample
mean 7, of the return on the k™ factor over the T observations. Note that the variance of
the return on the k™ factor (k = 1,. .., K) is the k™ largest eigenvalue \; of the covariance
matrix of stock returns. Therefore the estimation error on the k'™ factor risk premium is:
E[(7 — 7)?] = M\/T. Also note that the largest residual eigenvalue X is equal to Ay ).

Theorem 13 can be modified to account for risk premium estimation.

Theorem 16 With the above notation, if Assumption 4 holds, then the accuracy of the beta

To mitigate this, daily data need to be cleansed from spurious microstructure effects more carefully than
monthly data do. But there are ways to do it
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pricing equation with estimated factor risk premia is determined by:

2 2 2 '
E [Yil_g (#i - I?;ﬂik?k) ] < s (fV - 5F) + NIT é Ak (2.8)
The first term on the right hand side of Equation (2.8) is the familiar bound from Equation
(2.7). The second term contains risk premium estimation error. As anticipated, the first
term decreases in K and the second one increases in K.

Equation (2.8) shows how to determine the optimal number of factors in the 4-APT as
a trade-off between accuracy (Ag41(62 — 6%)/N) and parsimony (3°F, \./NT) in beta
pricing equation (2.2). Of course, this trade-off depends critically on the length of the
estimation period T'.

Theorem 16 is also relevant for the choice between exogenous factors and eigenvectors.
With exogenous factors, residuals are more risky, but the estimation period can be longer:
most scholars would agree that the assumption that the covariance structure of stock returns
is stationary over twenty years is heroic, yet they would not hesitate to estimate the market
risk premium over 1926-1993. It is an open empirical question whether this trade-off favors

exogenous factors or eigenvectors.

2.7 Conclusion

The §-Arbitrage Pricing Theory reconciles APT formalism with the interpretation of the
APT prevailing throughout empirical work. It does so by strengthening the economic
assumption from no limiting arbitrage to no J-arbitrage.

Ruling out §-arbitrage opportunities, defined as portfolios whose Sharpe measures
exceed the level 4, follows from placing a limit on how intensely agents are distracted away
from the pursuit of mean-variance efficiency. It seems that a consensus can be reached on
a range of values appropriate for 4.

The 8-APT covers a family of models stretching from Ross’s (1976) APT to the CAPM.
It lets economists select the model that is compatible with what they know of investor

behavior. The §-APT compares favorably in realism with existing asset pricing theories.
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Specifying the value of §, which is the essential point of the theory, makes the §-APT
testable.

One of the most valuable aspects of the §-APT is that it sheds new light on difficult
implementation issues such as the number of factors, their identity, and estimation error. It

forms a solid foundation on which to base future empirical work.
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Chapter 3
Is Beta Pricing Accurate?

This is an empirical investigation of what the Arbitrage Pricing Theory (APT) can and
cannot do. The APT states that betas with respect to the major factors of risk in the stock
market explain expected returns on stocks, or else approximate arbitrage opportunities
would exist. I find that the link between deviations from beta pricing and approximate
arbitrage is weak in practice. Even if beta pricing makes an error of 4+3.5% on every
expected return (quoted on an annual basis), the maximum Sharpe ratio in the stock market
need not be more than one and a half times the Sharpe ratio of a value-weighted index.
Thus, large deviations from beta pricing are compatible with the absence of approximate
arbitrage opportunities.

This result goes against the spirit of Ross’s (1976) APT, yet it is obtained simply by
applying the mathematics of the APT to historical stock returns data. Deviations from beta
pricing come from riskiness of residuals and from estimation error on factor risk premia.

Section 3.1 describes the empirical strategy. Section 3.2 investigates the APT with
a single exogenous factor proxying for the return on the market portfolio. Section 3.3
considers multiple endogenous factors corresponding to eigenvectors of the covariance

matrix of stock returns. Section 3.4 concludes.
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3.1 Empirical Strategy

This section reviews the theoretical foundations for beta pricing, outlines the overall objec-

tive of this study, enumerates the main issues, and describes the data.

3.1.1 Beta Pricing

The following assumptions are maintained throughout. There is onc riskless bond and a
finite number of risky stocks. Stock returns have finite second moments. No combination of
stocks is riskless. Agents can buy or sell any amount of stocks and bond without frictions.
In this world, the mean-variance efficiency or a portfolio of stocks and bond is summarized
by its Sharpe ratio: expectation divided by standard deviation of return. There exists a
unique portfolio of stocks with maximum Sharpe ratio, called the tangency portfolio.

The idea of beta pricing originated with the Capital Asset Pricing Model (CAPM).
The CAPM assumes an equilibrium in which agents care only about mean and variance of
returns, and where there are no other assets than stocks and bond. It implies that every agent
holds (a scalar multiple of) the tangency portfolio. By aggregation, the market portfolio is
the tangency portfolio. This result is mathematically equivalent to the exact beta pricing
equation:

E[7i] = BiarTas, (3.1

where E[-] denotes expectation, 7; is the return on the i stock in excess of the riskfree
rate (i = 1,..., N), Bias is the beta of the ' stock with respect to the market, and 7y, is
the expected return on the market portfolio in excess of the riskfree rate, also called risk
premium. Subsequently, the idea of beta pricing was also developed outside the CAPM.
The Arbitrage Pricing Theory (APT) assumes that portfolios of stocks cannot have
arbitrarily high Sharpe ratios. In other words, the maximum Sharpe ratio is finite. Since the
number of stocks is finite, this assumption is trivially verified, so it must be strengthened to
have economic content. The natural step is to specify how finite the maximum Sharpe ratio
is. It means ruling out by assumption the existence of d-arbitrage opportunities, defined

as portfolios with Sharpe ratio above the predetermined level 4. This approach, called the
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d-Arbitrage Pricing Theory, is developed in the second chapter of this thesis.

Intuitively, if J is not large then there is a tight relationship between risk and return:
return only rewards those who bear risk. In this case, betas with respect to major risk factors
should explain expected returns.

Let fi,..., f,\- denote factors. We can project stock returns onto them:
rn=Bah+..+Bifite, (3.2)

where 3;,...,3;x are factor loadings (also called betas), and ¢, is the residual. By

definition, residuals are uncorrelated with factors. Let A denote the largest eigenvalue of

explain much of the risk: factors explain a lot of it.

Conversely, factors can be projected onto stock returns:
fk=munr + ...+ mpNTN A+ Tk (3.3)

where the projection residual 7 is uncorrelated with asset returns. The coefficients my,
are weights of factor-mimicking portfolios. The projection residual 7, has zero variance if
and only if the k™ factor is spanned by asset returns. Let 4; denote the maximum Sharpe
measure among the portfolios that are spanned by the i’ factor-mimicking portfolios.

The object of interest is the approximate beta pricing equation:
Elfil=fan + ...+ Bik7r, (3.4

where 7, ..., T are factor risk premia. Deviations from beta pricing arc measured by the

mean squared approximation error:

Tiee TH

N
£ = min %Z(E[f,] - 00T = = BT ) (3.5)
1=

The smaller ¢, the more accurate beta pricing. The key result is ihat no 4-arbitrage implies
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an upper bound on deviations from beta pricing:

X (6% - 8%
€2 < A (8- 0) < b, (3.6)
If factors explain most of the risk in the economy (X small), if approximate arbitrage

opportunities are ruled out (0 not large), and if there are many stocks (N large), then betas

drive most of the expected return in the economy (¢ small).

3.1.2 Objective

This paper computes the bound on the right hand side of Equation (3.6) to determine how
accurate beta pricing can be. Major choices must be made, for example: What is §? And
what are the factors?

I do not wish to estimate the value of 4 in this paper. I am more interested in the mapping
between values of 4 and deviations from beta pricing. Do reasonable values of 4 imply
that beta pricing is accurate enough to be useful? Following Section 2.3.6 of the second
chapter and earlier authors, I choose a priori § = /26y, where 6, is the Sharpe ratio of a
value-weighted market index.

Two different sets of factors are investigated. The first set is a single factor equal to
the return on a value-weighted index. This brings Equation (3.4) very close to the CAPM’s
Equation (3.1). This choice sheds some light on the accuracy of the CAPM’s beta pricing
equation when the CAPM’s stringent equilibrium assumption is relaxed. The second set
of factors contains returns on portfolios whose weights are eigenvectors corresponding
to the largest eigenvalues of the covariance matrix of stock returns. This choice follows
Chamberlain and Rothschild’s (1983) (hereafter CR) traditional formulation of the APT. A
wide range is investigated for the number of factors.

There is an interesting relationship between the two sets of factors. The market factor
is highly correiated with the factor corresponding to «ne top covariance matrix eigenveclor.
Therefore a one-factor APT a la Chamberlain and Rothschild closely resembles the CAPM.
As we saw, the theoretical justifications are fundamentally different. As we also saw,

an important advantage of the APT formulation is that it provides a realistic bound on
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deviations from beta pricing assumed away by the CAPM. But in addition, it could be said
that the APT lets us bring in extra factors after the first one, in order to increase accuracy
of beta pricing or, from another point of view, increase robustness to departures from the
CAPM'’s equilibrium assumption. Therefore an important question is how much it really

helps to add extra factors beyond the first one.

3.1.3 Sources of Deviation from Beta Pricing

The first source of deviation from beta pricing is obviously the riskiness of residuals,
captured by . The traditional APT assumes that it is negligible because residuals arc
infinitely less risky than factors. With a finite number of stocks, this can hardly be the case.
Is the distinction between factors and residuals anywhere as extreme as the traditional APT
assumes? If it is not, the bound in Equation (3.6) could be large for reasonable choices of
d.

The second source of deviation from beta pricing is risk premium estimation error. This
is of particular concern if factors come from eigenvectors, in which case the sample size is
limited by the number of years over which the covariance matrix of stock returns can be
assumed to be stationary, usually five to twenty years. If factors are aggregate variables
specified exogenously, then their risk premium is still estimated with error, but much less
so Liecause the stationarity assumption remains credible over longer horizons, possibly fifty
years or more.

Assume that factors are determined by the top eigenvectors of the covariance matrix of
stock returns. Call Ay, ..., Ay the eigenvalues of the covariance matrix. If the number of
factors is /¢, then the maximum residual eigenvalue is A = Ax . Let 7 denote the estimate
of the k™ factor risk premium obtained from T iid observations. Neglecting estimation error

on second moments, the error bound on beta pricing is:

i=1

| N Ko \? ki (52 - (g;) L
E [N > (/‘i - ?;1 ﬁika) ] < N + NT ; Ak (3.7)

The first term on the right hand side of Equation (3.7) determines the accuracy of the beta

pricing equation, and the second term characterizes how parsimonious the set of factors
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is. Accuracy increase in the number of factors K, while parsimony decrecases in i'. The

trade-off between accuracy and parsimony can be used to find the optimal number of factors

K.

3.14 Data

Stock returns are extracted from the Center for Research on Security Prices (CRSP) database.
In order to maximize the number of stocks /N, the universe consists of all the stocks traded on
the New York Stock Exchange (NYSE) or the American Stock Exchange (AMEX) with less
than 10% missing observations over the period considered. In order to minimize estimation
error on the covariance matrix of stock returns, a high sampling frequency is chosen: daily.
Nevertheless, the first and the second moments of returns are always quoted on an annual
basis. To minimize estimation error on eigenvector risk premium estimates, a long period
is chosen: 20 years. The period covers the first 20 years of the CRSP daily database (July
1962 to June 1982). The last twenty years might have been preferable, but they contain the
Crash of 1987, an outlier which could have severely affected second moments.

The data contain 5017 daily returns on 1019 stocks. In addition, the CRSP value-
weighted NYSE and AMEX index return including dividends is used as the market factor.
As Roll (1977) points out, it is only a proxy, but its use is justified here since we assume
that it is only approximately mean-variance efficient.

At the daily frequency, non-synchronous trading is an important issue. I apply Korkie's
(1989) refinement of Shanken’s (1987) technique to adjust covariance and beta estimates
for non-synchronous trading. Cross-autocorrelation effects up to the third lag are accounted

for.

3.2 Exogenous Market Factor

Some authors use the Arbitrage Pricing Theory with exogenously specified aggregates as
factors. There is little consepsus on the nature of these factors or even on their number,
except that the return on a market proxy must be present. This is because the market return

is known to explain a lot of the risk of stock returns. As mentioned above, the factor
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corresponding to the top covariance matrix eigenvalue is highly correlated with the market
factor.

In this section, I choose a single exogenous factor equal to the return on a value-weighted
market proxy. This is especially interesting because it brings the beta pricing equations in
the APT and the CAPM very close together. The spirit of this section is to find out how
accurate the CAPM’s beta pricing equation is when the CAPM’s unrealistic equilibrium 1s

relaxed into ruling out §-arbitrage.

3.2.1 Factor vs. Residuals

The market factor explains 8.5% of the variance of stock returns. This is a substantial
fraction, but it still leaves a lot of residual risk unexplained.

We can decompose the covariance matrix of stock returns into the part that is explained
by the market factor and the part that is explained by residuals. The first one has a single
nonzero eigenvalue, which is equal to 14.6 (quoted on an annual basis). The second one has
N — 1 nonzero eigenvalues, the largest of which is equal to 3.9. Therefore factor risk easily
dominates residual risk, in conformity with the intuitive propexties of factors and residuals.
This may be a far cry from CR’s world, where the factor eigenvalue is infinitely larger than
the largest residual eigenvalue, but at least it is over three times as large.

For comparison’s sake, the largest covariance matrix eigenvalue is equal to 17.1 and
the second largest one is equal to 1.9. This means that we could have increased the gap
between factor and residuals by taking the top eigenvector instead of an exogenous market
factor. However, the improvement would not have been spectacular. One advantage of the
exogenous factor is that it has a clear economic interpretation.

In conclusion, this choice creates an empirical distinction between factor and residuals

that satisfactorily embodies CR’s theoretical distinction.

3.2.2 Residual Risk

The values for the elements entering the bound on the right hand side of Equation (3.6)

are as follows: X = 3.9, 8 = 205, 81 = 6p, N = 1,019. The Sharpe ratio of the
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market portfolio is estimated over the whole daily CRSP database (July 1962 to December
1993): §)pr = 0.47. These values correspond to an upper bound € < 2.9%. It means that
no d-arbitrage is compatible with deviations from CAPM beta pricing of +2.9% on cvery
expected stock return (quoted on an annual basis). This is fairly large. A 95% confidence
interval for the expected stock return centered around the CAPM’s prediction would be
11.4% wide.

It is instructive to compare this with the cross-sectional dispersion of CAPM predictions
BinsTar. Their cross-sectional standard deviation is 3.1%, with the value of 75y = 7.8%
estimated over 1926-1993 using the CRSP monthly database. Therefore the fraction of the
cross-sectional dispersion of expected returns that betas do not explain is almost as large
as the one that they do explain! As a consequence, ruling out §-arbitrage opportunities is
nearly consistent with a flat relationship between expected rcturns and betas. Unless one
believes in a 0-APT with a much lower ¢ than the one used here, the CAPM’s beta pricing
equation may be too inaccurate to be of any practical use. This is due to the riskiness of
CAPM residuals.

The interpretation is that, even though the market-clearing condition implies that CAPM
residuals should not be priced, they are so risky that they could be priced in a way that does

not create approximate arbitrage opportunities.

3.2.3 Risk Premium Estimation Error

In the most optimistic case, we can estimate the market risk premium 7,, over the whole
monthly CRSP database (January 1926 to December 1993). The standard deviation of the
estimation error on 7, would then be quite small: 2.3%. Nevertheless, it increases the
inaccuracy of CAPM beta pricing from 2.9% to 3.7%. Even when the market risk premium
is estimated over a 68-year period, its estimation error manages to increase the inaccuracy

of CAPM beta pricing.
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3.2.4 Overall Evaluation

The APT with one exogenous factor chosen as the return on a market proxy displays a
clear distinction between factors and residuals, but its beta pricing equation can be quite
inaccurate. Accounting for riskiness of residuals and risk premium estimation error, the
bound on the standard deviation from beta pricing is 3.7%. It may be too inaccurate for
practical use. This conclusion applies to the CAPM’s pricing equation oo, since it is
identical to the APT’s in this particular case. The conclusion does depend on the value of 4
for which §-arbitrage is ruled out, but only a value much lower than the one considered here
would overturn the conclusion. In my view, this is not possible without restricting investor

behavior in an unrealistic way.

3.3 Eigenvectors

Chamberlain and Rothschild consider the APT with endogenously specified factors: returns
on portfolios whose weights are eigenvectors corresponding to the top eigenvalues of the
covariance matrix of stock returns. This choice of factors minimizes the largest residual
eigenvalue ) under the constraint that the number of factors remains constant. However, the
number of factors K is not given by CR: in their model, it is revealed by the risk structuie

of the stock market. I investigate a wide range of values for /', from | to 100.

3.3.1 Factors vs. Residuals

Figure F-10 plots the top 100 eigenvalues of the covariance matrix of stock returns. Ac-
cording to CR, there should be an obvious gap between the top eigenvalues (factors) and the
remaining ones (residuals). According to CR too, from this point on remaining eigenvalues
are negligible. These requirements on the value of A are not compatible. On the one hand,
a gap is apparent only for small values of K, as Figure F-11 shows. On the other hand,
the higher K goes, the more negligible residuals become, as is apparent from Figure F-12.
There does not seem to be a value of A’ that satisfies both requirements.

Intuitively, this may mean that CR’s world is not ours. Therefore the APT, which has
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bite in CR’s world, may not have bite in ours, for lack of a clear-cut distinction between
factors and residuals. In my view, this state of affairs is responsible for the disagreements

in the literature about the value of K, reviewed by Connor and Korajczyk (1992).

3.3.2 Residual Risk

Here we face an extra problem compared to Section 3.2: What is §z? It is possible to
estimate d in the sample, but Jobson and Korkie (1980) report that it is severely biased
upwards. Since the first factor is highly correlated with the market factor, we know that
dr is of the same order as 4, or larger. In the absence of solid evidence that it is larger, |
simply take 0 = dyy.

With this choice, the standard deviation from beta pricing is plotied in Figure F-13. It
is equal to 2.0%, 1.7% and 1.6% respectively for K = 1, 2 and 3. For values of K beyond
3, it decays slowly and continuously towards zero. For example, a beund of 1% can be
attained by taking K = 68 factors. This is an order of magnitude more factors and an order
of magnitude more deviation than proponents of the APT typically mention. Nevertheless,
taking 68 factors is almost acceptable, cons dering that there are over a thousand stocks.
And a formula for expected returns with standard error 1% is accurate enough for practical
purposes.

Although the level of residual risk is disappointingly high, it is still low enough for the

0-APT to have an interesting implication.

3.3.3 Risk Premium Estimation Error

Using Equation (3.7), Figure F-14 plots the pricing deviations due to residual risk, risk
premium estimation error, and total. Large values of K are heavily penalized by risk
premium estimation error. It makes error bounds jump to 3.52%, 3.51% and 3.52% for
K =1, 2 and 3 respectively. For values of A" beyond 3, it grows slowly and continuously.
Total error is minimized by taking X' = 2. Even the optimal choice of A yields a beta
pricing equation that is not accurate enough to be of practical use.

Compared to the CAPM’s 3.7%, an error of 3.52% is only a minute improvement.
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Adding factors beyond the market does not really help.

3.3.4 Overall Evaluation

The APT with factors corresponding to covariance matrix eigenvectors does not display
an unambiguous distinction between factors and residuals, and its beta pricing equation
can be quite inaccurate. The error bound obtained here stands in sharp contrast to the
back-of-the-envelope computations published by proponents of the APT. The reason is that
such computations underestimate residual risk and ignore risk premium estimation error.
Of course, my results could be overturned by lowering § but, in my view, that would impose

unrealistically stringent restrictions on investor behavior.

3.4 Conclusion

The link between deviations from beta pricing and approximate arbitrage opportunitics in
the Arbitrage Pricing Theory is weak. In practice, large deviations from beta pricing are
perfectly compatible with the absence of approximate arbitrage opportunities.

Future research along the lines of this paper would examine exogenous aggregate factors
other than the market factor, and investigate the impact of covariance matrix estimation error.

From a broader perspective, it is quite disappointing to find out that the trade-off between
risk and return, at the present stage, does not yield useful restrictions on expected stock
returns. Part of it is due to the fact that expected returns on high-risk factors, which are a
key ingredient to the approach, are obviously estimated with high error.

By using the maximum residual eigenvalue, the APT obtains a weak bound that holds
even in the worst-case scenario. By using the average residual eigenvalue instead, it may be
possible to obtain a tighter bound that would hold in the typical-case scenario. Of course,

full confidence in the bound would have to be sacrificed.
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Appendix A

Spectral Theory of Large Random

Matrices

This appendix gives details about the spectral theory of large-dimensional random matrices.
To our knowledge, it is the first time that this theory has been mentioned in the finance
literature. It bears directly on tests for the number of factors in the Arbitrage Pricing
Theory (APT) based on the largest eigenvalues of the sample covariance matrix. Since this

is somewhat outside the scope of the chapter, we do not provide proofs.

A.1 Mathematical Tools

A cumulative distribution function (c.d.f.) is a nondecreasing right-continuous function

defined on the real line whose limit is zero at —oo and one at 4+00.

Definition 4 Let S be a symmetric matrix. lIts spectral c.d.f. is the function defined by
F3(z) = proportion of eigenvalues of S < z. If the matrix S is random, so is the value of

its spectral c.df. F5(z).

The spectral c.d.f. is in one-to-one correspondence with the system of eigenvalues. It is a
convenient way to summarize the behavior of eigenvalues without invoking the joint density.

The joint density would become very complicated as the number of eigenvalues grows.
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Definition 5 The linear operator L transforms the c.d.f. F with support [0, +0c) into the
nondecreasing function: LF(z) = [*_ t dF(t).

The inversior. formulais: F(z) = L~!'[LF)(z) = LF(1)+ LF(zx)/x +f, LF(t) dt/t? for
T >0, F(0) = L~'[LF)(0) = limy~o F(z), and F(z) = L™'[LF](x) = 0 for 2 < 0. This
linear operator is only introduced to simplify equations. Its presence can often be ignored

when thinking of the problem intuitively.

Definition 6 If F is a nondecreasing function verifying [*° dF(t)/(1 + |t|) < oo, then its

Stieltjes transform sy is defined by:

se(e) = [ 4r) (A1)

—00 t—2

for z on the strict upper half C* of the complex planc. Where possible, extend s;- by

continuity to real x: sp(z) = lim,ec+ 1 SF(2).

The inversion formulais F'(t) = limo(1/7)Im[f’ sr(z+ic)dz] at all points of continu-
ity of ', where Im denotes the imaginary part of a complex number. If F' is regular enough
at z, e.g. twice differentiable in a neighborhood of z, then sp(z) exists and is equal to
lime\ fiy—z5e AF(t)/(t — z) +im F'(z), where prime denotes the derivative (no confusion
with the transposition is possible). The real and imaginary parts of s, satisfy the Laplace

equation over C*:

FRe [sr(z +iy)]  O"Re[sp(z + iy)]

2 5 =0 (A.2)
2 : 2 . -
0°Im [sp(z + iy)] 4 0*Im [sp(z + 1y)] _ 0 (A3)
ox? Oy?

where Re denotes the real part. For fixed y > 0, the function z +— (1/7)Im([s (2 + )] is

the convolution of the density F’(z) with the Cauchy kernel = +— (y/7)/(z* + y*).

Definition 7 The c.d.f’s (F,)u> converge in distribution to F' if F,(z) — F(x) at all

points of continuity of F'.

With these mathematical tools, we can expose the results of the spectral theory of large-

dimensional random matrices that are relevant to some tests of the APT.
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A.2 Asymptotic Results

RecallthatY = U’X isan N x T matrix of T iid observations on a system of N uncorrelated
random variables that spans the same space as the original system. Let (y,,, ..., yn1)’ denote
the first column of the matrix Y. y1,...,yn: are uncorrelated with variances Ay, ..., Ay

respectively. We need to strengthen Assumption 3.

Assumptiods 5 y1,/V L, ..., yni/ VAN are iid.

We maintain Assumption 5 throughout the remainder of this appendix. The following
theorem was first proven by Maréenko and Pastur (1967). It was later generalized by a

number of authors. The latest and most general version is by Silverstein (1994).

Proposition 2 Assume that the ratio N/T converges to a finite positive limit c called the
concentration. Assume that the spectral c.d.f. F® of the true covariance matrix £ converges
in distribution to a c.d.f. H. Then the spectral c.d.f. F* of the sample covariance matrix )

converges almost surely in distribution to a nonrandom c.d f. G.

The fact that the sample spectral c.d.f. FEis asymptotically nonrandom is quite remarkable.
Even though I randomly moves around its expectation Z, its eigenvalues remain the same
(in some sense). The error on sample eigenvalues is all bias and no variance. Bias comes
from the fact that G is different from H.

Basic qualitative properties are established by Silverstein and Choi (1994).

Proposition 3 G is uniquely determined by H and c¢. H is uniquely determined by GG and
c. G converges in distribution to H as c goes to zero. G has a continuous derivative, except
possibly at zero. The masses G{0} and H{0} that G and H respectively place at zero are
related by: G{0} = max(H{0},1 — 1/c).

The particular shape of the distribution of the random variables .X' does not matter, except
through the covariance matrix X. Under standard asymptotics, ¢ is zero: sample and true
eigenvalues coincide. Even though the distribution of true eigenvalues need not be smooth
(e.g. for £ = [ it is discontinuou: at one), the distribution of sample eigenvalues must

be, except possibly at zero. Intuitively, the error of sample covariance matrix eigenvectors
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smoothes out sample eigenvalues. If H places some mass ~t zero, then G places at least the
same mass at zero. Intuitively, true eigenvalues at zero do not get smoothed out because the
observed variance of their corresponding eigenvectors is exactly zero in every sample. If
¢ > 1, then £ is rank-deficient, therefore it can have more eigenvalues equal to zero than X.

The equation linking H to G is due to MarCenko and Pastur (1967):

Vze Ct SLH (-———;Z—-——) = S[_,(;(Z). (A.4)

1 —cspg(2)

It is our contribution to introduce the linear operator L. It simplifies the equation. Equation
(A.4) clearly displays how nonzero concentrations drive G and H apart. Ar. additional
advantage is that s; and s,y are better behaved near zero than the Stieltjes transforms s¢;
and sy used previously.

Yin (1986) derives another equation with H and G.

Proposition 4 Assume that all the moments h,, h,, ... of H exist and satisfy Carleman’s

.. . ~1/2 . .
condition 3 72, h2k’/ ¥ — +oo. Then ail the moments g1, 92, - .- of G exist and satisfy

Carleman’s condition. They are given by:

k k!
k— ' 2 3
Vk=1,2,... gk = Zc "’Z—'—-——'h.',"hg--'-h,z‘, (A.5)
— nypina!- - ny,!
w=1 L
where the inner sum extends over all w-tuples of nonnegative integers (ny, na, ..., ny) such

that " \ni=k—w+ land 37, in; = k.

Carleman’s condition ensures that a distribution is uniquely determined by its moments.
It is verified by most familiar distributions whose moments exist. For the first moment,
Equation (A.5) yields g, = h,, a result that we have already seen in Theorem 2. For the
second moment, g, = h,+ chf, aresult that we have already seen in Footnote 2. The second
and higher moments of the sampie spectral c.d.f. are larger than those of the true spectral
c.d.f. The difference increases in the concentration. This means that sample eigenvalues

are more dispersed than true ones. Excess dispersion increases in the concentration.
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A.3 From True to Sample Eigenvalues

For L = I, all eigenvalues are equal to one. The true spectral c.d.f. is H(r) = Ly, o, (r),
where I denotes the indicator function of a set. Maréenko and Pastur solve Equation (A 4)
explicitly in this important particular case. Define a. = (I — /¢)? and b, = (1 + /¢')*.
Let y.(t) = \/(t - ac)(b. = t)/(2mct) for a, < x < b, and v¥i.(1) = O otherwise. Then
G(r) = [T we(t)dtif0 < c < Land G(x) = (1 = 1/c)Mjo 4ocy (1) + [T w0 (1) dt if ¢ = 1.

This is the formula that yields Figure F-1.
In the general case, remember that the sample spectral c.d.f. & has a continuous deriva-
tive G’, except possibly at zero. Silverstein ard Choi (1994) show that for every . # 0 for

which G'(x) > 0, mc¢G'(x) is the imaginary part of the unique z € C* satisfying:

r= 2 +c/+°° L aH (1) (A.6)
r = —- ? {. ). .
~oo 1 4tz

When H is discrete and its support has a finite number of points ny, z is the root of a
polynomial of degree at most ny + 1. For ny < 3, the polynomial equation can be solved
in closed form, which yields an cxplicit formula for G'(x). A Fortran routine by Wachter
(1976) implements it for n,; = 2. Otherwise, it is straightforward to solve Equation (A.6)

numerically. In particular, it is a well-posed problem.

A.4 From Sample to True Eigenvalues

The APT makes assumptions about the eigenvalues of the true covariance matrix X of the
returns on all stocks traded in the stock market (Chamberlain and Rothschild, 1983). Some
authors have tried to test these assumptions by using the eigenvalues of the sample covariance
matrix £. As Brown (1989) points out and our analysis confirms, sample cigenvalues do
not estimate true eigenvalues well when N is of the same order of magnitude as 7', which
is the usual case. In particular, the largest sample eigenvalues are upward biased estimators
of the largest true eigenvalues. How can we use the spectral theory of large-dimensional
matrices for such tests?

Theorem 3 states that the true spectral c.d.f. I is uniquely determined by the sample

84



spectral c.d.f. G and the concentration c. It is easy to obtain & smooth nonparametric
estimator G of G. Can we plug it, along with ¢ = N/T, into Equation (A.4) in order to
back up an estimator Hof H?

G can be used to estimate the complex function s.¢; by s & over C*. Equation (A.4)
then yields an estimator s, j; of the complex function s, but not over all of C*: only
over the domain D = {z/[l - ¢ $,&(2)]z € C*}. This domain is included in C*, but
excludes a portion of C* near the real axis. A typical domain D is shown in Figure F-9.

From the Stieltjes transform s, 7, we need to back up an estimate of the distribution ot
true eigenvalues H. Roughly, the Stieltjes inversion formula is: lim o Im[s, 7 (+ 4 15)] =
nxH'(x), where H'(x) is the density of true eigenvalues. Therefore we can estimate /1'(.r)
if we know s, & (x + 2¢) for small ¢ > 0. What we need is to extend our estimator s, 7 from
the domain D towards the real axis.

The imaginary part of s, ; satisfies the Laplace equation (A 2)-(A.3) over C*, and in
particular between D and the real line. Our goal is to solve this partial differential equation
over C* - D. The boundary of C* - D is divided into two picces: the frontier with D,

where we know the value of s and the real axis, where we want to know it. Since we do

LH®
not have any information about the function on a piece of the boundary of the domain, this
p.d.e. has a “free boundary.”

Solving the Laplace equation with a free boundary is an ill-posed problem.

Even infinitesimal errors on the value of s, ; over the domain D are amplified into large
errors near the reul axis. To put it in another way, there are some very different values of

~ on the domain D. Available

s, jj hear the real axis that imply almost the same values ot 5, j;

data do not provide much guidance in choosing between them. If s, i oscillated wildly
over the real line, the Laplace equation would smooth it out so that we would not notice it
over D.

In practice, for high values of ¢, sample eigenvalues look a lot like in Figure F-1,
regardless of how true eigenvalues are distributed. It is possible to back up the average and
the dispersion of true eigenvalues, but not much more than that when N is of the same order
of magnitude as T'.

The degree of ill-posedness is determined by how far from the real line the domain D
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is. It increases in the concentration ¢. If ¢ is negligible, then the domain D is so close to
the real line that ill-posedness is negligible. In practice, ¢ is not negligible, which is why
we want to improve over sample eigenvalues in the first place.

There is, however, one reason to hope that this approach can potentially be yield APT
tests: the degree of ill-posedness is not uniform. It is roughly proportional to the density
of sample eigenvalues. In Figure F-9, there are a lot of small eigenvalues and a few large
ones. This is realistic for the stock market. We can see that the domain D gets closer to
the real axis around large eigenvalues (large values of .r). It may make it casier to estimate
the density of true eigenvalues h(r) when x is large. Silverstein and Combettes (1992)
make a similar argument in the context of signal detection. It suggests that the problem of
estimating large, isolated eigenvalues may not be ill-posed, even if the concentration is not
negligible. This suggestion will be explored in future research.

In the end, it may even turn out that large, isolated true eigenvalues arc actually well
estimated by large, isolated sample eigenvalues. This kind of reassurance, however, cannot
come from standard asymptotics. Therefore it is essential to recognize in APT tests that
the number of variables NV is not negligible with respect to the number of observations 7.
The spectral theory of large-dimensional random matrices offers one possible way to do
this. Another way is proposed by Adamek (1994). He obtains very interesting results by

assuming that the number of variables N goes to infinity while the number of observations

T remains fixed.
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Appendix B

Other Structured Estimators

This appendix discusses the optimal combination of a structured estimator L= (@s)igetn N
and the sample covariance matrix L= [@ij)i,j=1,...~. Section 1.3.3 shows the importance of
pij = Cov([d,j,d;;] fori,j=1,...,N,and ¢ = (1/N) N f':, ;;. This section shows

how to estimate these parameters for various choices of the structured estimators X.

B.1 All Variances, Respectively Covariances, Are Equal

Frost and Savarino (1986) propose a structured estimator of the covariance matrix with
two free parameters: one on the diagonal, the other one off the diagonal. They obtain
T =ml +§(11' - I), where § = gr=y £/, £j21 &y; is the average of the off-diagonal
elements of the sample covariance matrix, and 1 is a conformable column vectos of ones.
On the diagonal, ¢;; is at most of order 1/T for each i = 1,..., N. Off the diagonal,
Var[§;;] is of order 1/T and Var(5;;] is ct most of order 1/(NT'), therefore ¢, is at most
of order 1/(v/NT) fori,j = 1,...,N, i # j. This makes ¢ at most of order V' N/T" it

vanishes asymptotically. In conclusion, for this choice of prior, we recommend ¢ = 0.

B.2 Diagonal Matrix

If we impose that I is diagonal, then wij = 0ford,j=1,...,N,i# j. Since ¢ is of

order 1/T fori = 1,..., N, this makes ¢ at most of order 1/T. For this choice of prior
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too, we recommend ¢ = 0.

B.3 All Correlation Coefficients Are Equal

We can impose that all pairs of stock returns have the same correlation coefficient. On the
diagonal, 7,, = 4,,, therefore o, = Cov(7,,d,] = Var[a,], which can be estimated by
Zn= )Tl (r3 = &,)* fori = 1,...,.N, as in Theorem 7.

Let p = K(Tz-'l'j Y¥, 242\ 6,,/4/6..6,, denote the average of the correlation coeffi-
cients in the sample covariance matrix. Off the diagonal, 7,, = /,/5,,d,,. Cov{p.d,,] is
of order at most 1/(.NT), therefore it can be neglected. Cov|a,,, @,,] can be estimated by
g, = (1T (2 — 64)(Tuxy — 3;). Using the delta method, i, = Cov[7,,.4,,]
These formulas yield the estimator ¢ = (1/N) %, £, 3,; that we recommend in this

case.

B.4 Single Index Model

The matrix of observations is X = [I“}'.i'.',‘,".',?:' On the diagonal, 7,, = a,,, thereiore
i = Cov|i;, ;) = Var|d,;], which can be estimated by »,; = (1/T*) S («2 - 7,,)* for
i=1,...,N,as in Theorem 7.

Let [zas]i=1...r denote returns on the market index. Let 7y = (1/T) T/, a3, and
fori=1,...,N,letG;ay = (1/T) L., Tiuxag. Off the diagonal, &,, = a7,/ 101
Cov|7,1,3,;] can be estimated by #,ar..; = (1/T%) X1 (vuxage = Fuag ) (i, —3,5). Simi-
larly, Cov[d yray, ., can be estimated by Giars; = (1/T2) S5 (03— Farar )0y = 6,,).
Using the delta method, »,, = Cov[d,,,d,,] can be estimated by 3, = ,21.,,0,a1/Tarar +
Tty Tiar/Tarag — ﬁ,\,‘\,',ﬁwéjM/Ffi,‘,\,. fori,j=1,...,N,i# j. These formulas yicld
the estimator 3 = (1/N) L)X, -, &,; that we recommend when I is given by the single
index model.

The extension to multiple index models is tedious but straightforward.
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Appendix C

Proofs of Chapter 1

We prove the theorems contained in the main body of the text. The propositions in Appendix

A and the formulas in Appendix B are not proven.

C.1 Theorem 1

Recall that the matrix Y is defined as Y = U’ X, where U is a rotation matrix containing the
eigenvectors of the covariance matrix Z. Let [A;;]i j=1,..,n denote the entries of A = U'ZU.
The rotation matrix U is such that A\;; = O when¢ # jand Ayy,..., \yy are the eigenvalues
of the covariance matrix X. Please be aware that the eigenvalues of Z are also denoted

A1, .., Aw elsewhere in the text. Let 2 = E[||Z — Z||?).
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1 N(
= —=> (E|vi| - 2E v
o> (] - 2o
Therefore
N .
"—7:7712 7‘3 < N—T‘izz:lE[y”]
301 &
< Z |—=
- T\N

Therefore (N/t)m* —r3 - 0.0

C.2 Theorem 2

Let £ = [5;)ij=1,..v and £ = [03j)ij=1,..N-

Now let us prove the second statement. Recall that the matrix Y is defined as Y = U'X,
where U is a rotation matrix containing the eigenvectors of the covariance matrix X. Let
[y,-,]a=1,....:; denote the entries of the matrix Y. Let [);;];;=1,..~ denote the entries of

t=l,...,

A = U'ZU. The rotation matrix U is such that \;; = O when ¢ # j and A, .

the eigenvalues of the covariance matrix Z.

90

Then it can easily be shown that the
following equations hold: E[(1/N)TN, X] = E[(1/N)TX, 64 = (/NN 00 =
(1/N) X, \i. This proves the first statement of Theorem 2.

N /\NN are



S A A !
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x {i: S (13, - /\,-,)} {V 3 (2 - A,,)H .

i=1

In the summation on the right hand side of Equation (C.1), the expectation is nonzero only
ifty =t ort) =tyort; =tsort, = tyort, =ty or t3 = t4. Since these six conditions
are symmetric we have:

E [(Tﬁ - 171)4]

< Syyy

IA
Hl e
“M*l
M=

M=
-

M
——
=2
M=
—

o

>
<
[S—
%

I
i
E
. M'ﬂ
[\/]q
-
i

< sl [t (F )]
2

91

1 T i N ) 4
X Tlglm[i {N;y"‘
384B
< —_— 0
- T




where B is defined by Assumption 2. Therefore i1 — mn converges to zero in quartic
mean, hence in quadratic mean and in probability. For future reference note that i =

(1/N)YTNE[y3] < {(1/N)YSZN, E[y&]}'/* < B'/4, therefore m is bounded. O

C.3 Theorem 3

We have E[(1/N) =N, (A = m)?] = E[||Z—mI|]*| and E[(1/N) =X, (A, = m)?] = E[||Z -
mI||%). Note that £ —m/ and £ — ¥ are orthogonal in the sense that E[(£ —mI)o(£—~E)] =
(£ —mI) oE[E — Z] = (£ — mI) o (£ — £) = 0. Therefore the triangle (], %, %) has a

right angle at £. Then Theorem 3 follows from Pythagorus’ Theorem. O

C.4 Theorem4

Let S denote an N x N symmetric matrix and VV an N x N rotation matrix: VV' = V'V = [.
First, note that (1/N)7(V'SV) = (1/N)7(S). The average of the diagonal elements is
invariant by rotation. Call it m. Let v; dencte the i column of V. The dispersion of the
diagonal elements of V'SV is (1/N) =N, (v/Sv; — m)%. Note that (1/N) SN (viSv; —
m)? + (1/N) X, Z%: (viSv;)? = (1/N)F[(V'SV — mI)*] = (1/N)F[(S — mI)?] is
invariant by rotation. Therefore the rotation V' maximizes the dispersion of the diagonal
elements of V'SV if and only if it minimizes (1/N) =N, ¥, (v/Sv;)?. This is achieved
by setting v;Sw; to zero forall 4,5 = I,...,N,i # j. In t;:s case, V'SV is a diagonal
matrix, call it D. V'SV = D is equivalent to S = V DV”. Since V is a rotation and D
is diagonal, the column of V' must contain the eigenvectors of S and the diagonal of D
its eigenvalues. Therefore the dispersion of the diagonal elements of 1"/S1” is maximized
when these diagonal elements are equal to the eigenvalues of S. This completes the proof

of Theorem 4. O
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C.5 TheoremS5S

First, we prove that the solution to Equation (1.6) is of the form T =wml + (1 - w‘)i for
some weight w. Since T is the orthogonal projection of X onto the plane spanned by [ and
%, (£ — X)LI where L denotes orthogonality. Since T is an unbiased estimator of X and /
is nonstochastic, E(Z o J] = Lo I and (£ — Z)L1. Since m1 is the orthogonal projection
of Z onto the line spanned by I, (£ — m/)LI. Combining the last result with the first two
yields (i —mlI)LI and (£ - mlI)LI, theretore both S —mland X~ ml belong to the
orthogonal of I in the plane spanned by I and %, which is a subspace of dimension one.
$ — m/ and T — mI must be parallel, which means that T is on the line going from ! to
)

Now, we find the weight w. The proof relies on elementary geometric relations in
the triangle (m/, £, %) with right angle at . I is the orthogonal projection of X onto the
line going from m/I to . Let d = E[||E — m/||}] and &2 = E[||Z — £|||. The cosine
of the angle at mI can be expressed in two different ways: d,/r, and r,/d, therefore the
two ratios must be equal and d; = r3/d. Similarly the cosine of the angle at  can be
expressed in two different ways: d,/r, and r,/d, therefore the two ratios must be equal
and dy = r3/d. Note that d; + d; = d as expected. These values for d, and d, yield
3 = (dy/dymI + (d,/d)Z = (r}/d®)mI + (r}/d})%.

Finally, we compute the mean squared error of £. Let r2 = E[||Z — Z||*]. The angle
of (X, ml,Z) at mI and the angle of (£, £, X) at T are equal. Equating their cosines yields
r1/d = 1o/T3, therefore o = ri7m5/d and ||E — Z||* = r2r/d®. Note that Theorem 5 can

also be proved by calculus alone. O

C.6 Theorem 6

First, it is convenient to prove the following lemma.

Lemma 1 E[||Z||?] is bounded.
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Let [A;;]i j=1,..~ denote the entries of A = U'EU. The rotation matrix U is such that A;; = 0

when ¢ # j and Ay, ..., Ayn are the eigenvalues of the covariance matrix X.

N , | NN /T 27
BIE- 2P = B |5 33 (5w - )
=1 j=1 t=1 ]
1 Sk (1 i \ )2'

= N = YitYjt — Aij
N::lj 1 TS ’ ’ |

l N N l T
= 5 z=: Z Var [7 'z::l ?/it?/jtl
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| 1-;1];]
< W;; E[yll]E[y]l]
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< 2ol SEB)
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where A and B are defined by Assumptions 1-2. Therefore E[|| — Z||?] is bounded.
IZIP = (1/N) L Elal < {(1/N) L Eld]}? < VB implies that E[|Z]] is

bounded. For future reference note that it implies that d2, 73 and r3 arc bounded too. O

Now we turn to the proof of Theorem 6. We successively decomposc @ — 2 into terms

that are easier to study.

P& ={|E-m1[ - |- mi[} + {|E- i

:_ E [”i ~ml

2] } (C.2)

It is sufficient to show :hat both bracketed terms on the right hand side of Equation (C.2)
converge to zero in quadratic mean. Consider the first term: ||Z — 7id||2 — ||Z — ml|? =

(m — m)?, therefore by the proof of Theorem 2 it converges to zero in quadratic mean. Now
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consider the second term.

=

(C.3)

Again it is sufficient to show that the three terms on the right hand side of Equation (C.3)

converge to their expectations in quadratic mean. The first term m? trivially does. The

second term 2mim does too by the proof of Theorem 2, keeping in mind that m is bounded.

Now consider the third term ||Z||2.
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Again it is sufficient to show that both terms on the right hand side of Equation (C.4)

converge to their expectations in quadratic mean. Consider the first term.
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Therefore the first term on the right hand side of Equation (C.4) converges to its expectation

in quadratic mean.
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Now consider the second term.

NI /1
Var ﬁ;; (Nizyttyrr)
T#L
N2 T T T T | N 2 N 2
= T Z Z Z Z Cov [(ﬁzyn.ym) ,(NZ:I/,-:ZMTI)] (C.5)
L=l r"l|="l =1 f"z2="’ i=| i=1

The covariances on the right hand side of Equation (C.5) only depend on ({t, 7y } {12, 72 })*
the number of elements in the intersection of the set {t,,7,} with the set {f2, »}. This

number can be zero, one or two. We study each case separately.

({t,, 71} N {ta, m})* =

In this case ((1/N) ©N., vir, vir,)? and ((1/N) SN, yi1,vir,)? are independen., so their

covariance is zero.

{t,n}n{tn}* =1

This case occurs 4t(t — 1)(¢ — 2) times in the summation on the right hand side of

Equation (C.5). Each time we have:
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Therefore in this case the absolute value of the covariance on the right hand side of

Equation (C.5) is bounded by B/N2.

({ti,n} N {ts, m})" =2

This case occurs 2¢(t — 1) times in the summation on the right hand side of Equation

(C.5). Each time we have:

| & Py i
Cov (N Z 'yu,yir,) s (— Z yitzyirg)
i=1 ]
o (5 ) (3 S
= |Cov Zyny,z ,(’Nzyilyiz)

1

—1\7
N N N N
N4 E Z Z Z |CoV [yi1Yia¥j1 Y52, Yk Yk2¥n yiz] | (C.6)
i=1 j=1k=11=1

IA
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Now consider the summation on the right hand side of Equation (C.6). When 4, j, k,/
are all pairwise distinct, Assumption 3 ensures: E[y;1y;1¥a1y0] = Elyayii|Elykiyul,

which in turn implies:

Cov [y11yy;1¥52, YerYe2ynye] = E [yilyizyjlyjzyklykzyuyzz]
— E [yuynyi ¥ E [Wkiykynye]
= E[yaynyayn)’ — B [vayi]” Elyayn]
= 0.

Therefore the summation on the right hand side of Equation (C.6) only extends over
the set S = {(4,4,k,1) : i,5,k, 0 = 1,...,N: {4, 7, k,1}* < 3}, with the convention
that {2,2,3,4}* = 3.

Cov (— Yit yir) ) (— yu;ﬂm)
N 4 ! 1 N =

=1

1
S e > |Cov [yayayiyiz, Yk Ykayu i) |
(i kL)ES
1
< N > \/E [yglyz'22y_7zly;2]E[yi%ly%.?ylzlyfﬁ]
(i.4:.k1ES
1
< = > E[yglygz'l]E[?/ilytzl]
(i,j.k)ES
1
< N4 Z \/E[y?I]E[y;l]E[yzl]E[?/?l]
(i3, 1)ES

The summation only extends over the quadruples (3, j, k, ) where i = j ori = k or

i=1lorj=korj=1ork =1 Since these six conditions are symmetric we have:
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Having studied the three possible cases, we can now bound the summation on the right hand

side of Equation (C.5):
1 N 2 ] N 2
v (N ?::‘ yitlyir,) ) (7\7 ; yitg?/irg)

N? B 6B
< — R — —
< T {4t(t 1)(t - 2)N° +2t(t — 1) N }
< 4B(l:;L 3A4) 0.

Backing up, the second term on the right hand side of Equation (C.4) converges to its
expectation in quadratic mean. Backing up again, the third term ||i||2 on the right hand
side of Equation (C.3) converges to its expectation in quadratic mean. Backing up more,
the second bracketed term on the right hand side of Equation (C.2) converges to zero in
quadratic mean. Backing up one last time, &2 — d? converges to zero in quadratic mean,
hence in probability. For future reference note that, since ||£ — mJ||* converges to its

expectation d? in quadratic mean and since d? is bounded, E[||Z — mJ||* is bounded. O

C.7 Theorem 7

Again we prove this theorem by successively decomposing 73 — 73 into terms that are easier

=2 2
Tz - TZ = {

to study.

i T t-’l?.zT - 2"2 —-E [“i - Zl'z] }
l— T TR 1 I g 2
DM RS (LS AR

99




It is sufficient to show that both bracketed terms on the right hand side of Equation (C.7)

converge to zero in quadratic mean. Consider the first term.

slls-=} - yo2E

Therefore the first bracketed term on the right hand side of Equation (C.7) has expectation
zero. Fort = 1,..., T let y, denote the n x 1 vector holding the " column of the matjx

Y.

var |2 S feae — 2] = Lvar [ e - 5
wlgr o~ = [ e - 2]
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Therefore the first bracketed term on the right hand side of Equation (C.7) converges to zero
in quadratic mean. For future reference note that, since E[||Z — Z||] is bounded, it implies

that E[{(1/T%) =7, [|z.x." ||*}?] is bounded. Now consider the second term.
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It is sufficient to show that the last two terms on the right hand side of Equation (C.8) are
bounded. It is true for E[||Z — Z||*] since E[||£ — m[||*] and ||X — mI|| are bounded. Now

consider the last term.

>:+Z“

< 25 e -3f + o

Since E[{(1/T%) =L, |lz.z.("||*}*] and E[[|Z — X||*] are bounded, so is the last term on
the right hand side of Equation (C.8). Backing up, the second term on the right hand side
of Equation (C.7) converges to zero in quadratic mean. Backing up once more, 72— 13

converges to zero in quadratic mean, hence in probatility. O
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C.8 Theorem 8

Follows trivially from the previous two theorems. O

C.9 Theorem9

col [E-5)2 B0

As usual the subscript ;, which should index all quantities unless otherwise specified, has

been omitted to make notation lighter.

“?:—2“ = %%(ﬁ—m)l—!-(%—;—i)(i—ml)‘
2 N\ 22
< o+ |ETAEAE D g o)

It is sufficient to prove that both terms on the right hand side of Equation (C.9) converge
to zero in probability. The first term does by Theorem 2. Now consider the second term.
Note that both its factors |(7? — r2)d? — r2(d* — d?)|/(d*d?) and ||E — m[|| are bounded
in probability, therefore it is sufficient to prove that either one of them converges to zero in
probability. Since d? and 72 are bounded by Lemma 1, we have: (72 —12)d2 - r2(d2 —d?) 5

0. Let S| denote the set of indices ¢ such that

(r,—r,)d —r, cp d"
>d?

<\|@ -~ (& - )|

If the set S is infinite then |(72 — r2)d? — r(d® — d?)|/(d?d*) 5 0 as t tends to infinity
inside the set Sy, and so does the second term on the right hand side of Equation (C.9). If
the complementary to the set .S, is infinite then d2d? < |(72 — r2)d? — r2(d* — d?)|'? 5 0
as ¢ tends to infinity outside the set S;. By Theorem 6 it implies that d — 0, therefore
||i - mli|| L 0 as ¢ tends to infinity outside the set S}, and so does the second term on
the right hand side of Equation (C.9). Bringing together the results obtained for ¢ inside

and outside the set S; yields that the second term on the right hand side of Equation (C.9)
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converges to zero in probability. Backing up, \\i — 3|l 55 0 and so does \\:\AZ . ki)
C9.2 E[|IZ-Z|} -E[IE-Z|2 -0
E H“E - zﬂ -5~ z||“ — E H (?: - 2) o (§+ 5 22) H

JEME_E ”]\]E[Ilfqui—zz

It is sufficient to prove that the first term on the right hand side of Equation (C.10) converges

IA

} (C.10)

to zero and that the second term is bounded. Consider the first term.

B 73 22\ o AP
E[“Z—Z = B[S @-mI+ = (>:—m1)

72

[ 4 2\ 2
— El2@m—m? LT O
= E d4(m m)]nLE[(J2 d2> ”Z mli

7id* — i 7)2}

2}

(C.11)

< E f(m—m)z] +E [( =

It is sufficient to show that both terms on the right hand side of Equation (C.11) converges
to zero. The first term does by the proof of Theorem 2. Now consider the second term.
Since 72 < @ and 7 < @, note for future reference that (F2d? — 12d2)2/(d2d*) < 4d>. Fix
€ > 0. Let S; denote the set of indices ¢ such that d*> < ¢/8. Since d* — d® — 0 in quadratic
mean, 3T, VT T > T, = E[|& — d*|] < £/8. We have:

(Ff'd2 - r,ch"')z
VI' TeS;,t>T, = E

—~

< 4E @]
d2d*

IA

4E [|¢P - d2|] + 4d>
4% + 4%
E. (C.12)

VA

IN
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. ~ i) . . .
Since 73 — r? and d*> — d* converge to zero in quadratic mean and since 7 and d* are

bounded, 72d? — rd? = (P — r2)d? — r3(d*> — d?) — 0 in quadratic mean, therefore
30, VT T > T, = E[(72d* — r2d%)?] < £*/1024. Denote Pi(-) the probability of an
event. We have: VI' T ¢ 55,7 > T, =

(f}dz—r,%P)zJ [ e - i)’

2 E (“z<£)
=0 d_g}Prd_8

| (Ffdz — r%c’iz)2
d2d*

d>d*

+E

< E[4(P|J2§5]Pr<d7g5)
8 8
8 2n 2\ € n €
+—dzh[(rd—-r,d) d >§]Pr(d >§)
NEIE N RPSPRE
< 4+ [( & - rd)]
< £+5_1_2. et
S 27T 1024
< € (C.13)

Bringing together the results from Equations (C.12)-(C.13) yields:

€,

(7d? - rid?)
vT TZmax(Tl,T2)=>E[ = <
d?d*

therefor> the second term on the right hand side of Equation (C.11) converges to zero.
Backing up, the first term on the right hand side of Equation (C.10) converges to zero. Since
E[||Z — Z||?] is bounded, it implies that the second term on the right hand side of Equation
(C.10) is bounded too. Backing up once more yields E[||§'. — 3|3 - E[|E-Z|} = 0.0

C93 (A7) — (r¥r3/d®) 50

R} i (Fffg r,rz)dz r22 (cP d~)
a2 2 &2d2
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By Theorems 6-8 and Lemma | the numerator on the right hand side converges to zero in

probability. Let S, denote the set of indices ¢ such that

~) ~) 7 92 ) ) )
(rfr; = r,'rg) d* —rir} (d —d? )

d*d?

< \J|F7 = rird) @ — i3 (& - )]

If the set S, is infinite then (F272/d2) — (r2r2/d?) 5 0 as ¢ tends to infinity inside the
set S,. If the complementary to the set S, is infinite then d®d®> < |(F7} — rird)d? -
r2r2(d® — d?)]'/2 5 0 as t tends to infinity outside the set S,. By Theorem 6 it implies
that d2 — 0, therefore (r2r2/d2) 5 0 as ¢ tends to infinity outside the set S, and so does
(7372 /&1’) Bringing together the results obtained for ¢ inside and outside the set S, yields

(PR /) — (r3r2/d?) 5 0.0

C.10 Theorem 10

This is similar to the proof of Theorem 5. $ is the orthogonal projection of X on the line
between X and . Let d2 = E[||€ — m[||], &3 = E[||E — Z||] and r2 = E[||Z — Z||?]. The
orthogonality condition (T — fl).L(Z — 3) implies d2 + 12 = r¥. Also, the orthogonality
condition (£ — £)L(E — £) implies d2 + r2 = r2. Subtracting one equation from the
other yields d2 dz = r, — r%. Since X, 3 and I are aligned, we have d, + d, = d,
which implies d} — &3 = &2 + (d — d,)? = 2d,d — d*. Therefore 2d,d — d* = r? — 13,
ie.d) = (r} + d® — r3)/2d. By symmetry, d; = (r3 + d*> — r3)/2d. Note that d, + d, = d
as expected. These values for d; and d, yield £ = (db/d)T + (d,/d)E = [(+3 + d* -
r})/)Z + [(r} + & - 13)/(2d%)]E.
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Appendix D

Proofs of Chapter 2

The notation common to the proofs is as follows.

The N x 1 random vector T = (7;);=,.. n contains stock returns. The N x 1 vector
p = (pi)i=1,..n = (E[fi])i=1,.. n contains expected stock returns. The N x N matrix
¥ = (0ij)ij=1,..~ = (CoV[F;,7;])ij=1,.. ~ contains variances and covariances of stock
returns.

The K x 1 random vector f = ( ﬁ)kzl_m,;( contains factors. The N x K matrix
matrix of factors. The K x I vector 7 = (7 )=\ ...k contains factor risk premia. The N x N
matrix Q = (wjj)ij=1,..n = (CoV[&;, &;]);j=1,.,~ contains variances and covariances of
residuals.

The N x 1 vector w = (w;);=,.. n contains portfolio weights.

D.1 Theorem 11

See Chamberlain and Rothschild (1983). This result can also be obtained in a less sophis-
ticated way by letting N go to infinity in Theorem 13 while holding § and X bounded.
a
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D.2 Theorem 12

The N x 1 vector e contains the endowment of marketable assets. Let i denote the future
value of all non-marketable assets. The representative agent has risk aversion A. Her
utility maximization problem is equivalent to: maxy, w'p — 3 A(W'Ew + 2w'Cov[r, n)).
Let h = £~ !Covlr, I~z] denote the portfolio whose future value most closely mimics the
future value of non-marketable assets. The solution to the representative agent’s utility
maximization problemis: w = —h+ X' /A. The agent first hedges her exposure to non-
marketable risk by shorting portfolio h, and then adds a mean-variance efficient position.
The market clearing condition is w = e, therefore in equilibrium: g = A% (e + h).

The maximum squared Sharpe measure in the market is given by: 5 = Wy =
A(e'Ze + 2e¢/’Th + h'Sh). The squared Sharpe measure of the market portfolio is:

2. = (n'e)?/(e'Ze) = A*(e'Se + €'h)?/(e'SLe). Therefore we have:

3, _(e'Ze) (WETh) - (e'Sh)?

s . (D.1)
M (e'Xe + e'Xh)”

The numerator on the right hand side of Equation (D.1) is no greater than (e'Xe)(h'2h).
In Theorem 12, it is assumed that the covariance between marketable and non-marketable
assets is non-negative, which ensures that e’Xh > 0. Therefore the denominator on the

right hand side of Equation (D.1) is at least as great as (€'Xe)>. It implies that:

1%

h'h
eYe’

0 i<

52
()M

(D.2)

The variance of the value of non-marketable assets 7%, is even higher than the variance
of its projecticn onto the market h’~h. Noting that 03, = €'Ze completes the proof of

Theorem 12. 0

D.3 Theorem 13

This proof relies heavily on the orthogonal projection P onto the residual space. Formally:

P =1y —B(B'B)"'B’, where Iy denotes the N x N identity matrix. Recall the propertics
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of orthogonal projections: P> =P = P’.

Since residuals are uncorrelated with factors, we have: ¥ = B¥B’ + Q. It implies that
P'YP = P'(BYB' + Q)P = P'QP.

Risk premia are determined by: min(p — B7) (e — B7)/N. The solution to this
minimizatio: problem is: 7 = (B'B)~!'B’u. The mean squared error on beta pricing is:
e? = (p—-B7)(p—B7)/N = p'Pu/N.

Consider the portfolio with weights Pu. Its expected return is (Pp)'p = p'Pu.
Its return variance is (Pu)'S(Pu) = uW'P'XPy = p'P'QPu = (Pu)QPp) <
A (Pp)'(Pu) = X p'Pu, where the inequality follows from the properties of the largest
eigenvalue of the residual covariance matrix. Therefore portfolio Pp’s squared Sharpe
measure exceeds (p'Pu)? /(X W'Pp) = w'Pp/). So the maximum squared Sharpe mea-
sure in the economy - must also exceed &/Pp/X. As it turns out, this statement can be
refined.

4 is the maximum Sharpe measure in the projection of the factor space onto asset
returns. It means that there exists a portfolio whose return is uncorrelated with portfolio
Pp’s and whose Sharpe measure is dr. It is always possible to form a linear combination
of two uncorrelated assets so that the squared Sharpe measure of the combination equals the
sum of the squared Sharpe measures of the two assets. In this case, it is possible to form a
portfolio whose squared Sharpe measure is /P /A +6%. As a consequence, the maximum
squared Sharpe measure in the economy 5 must be at least as high as p'Pp/X + 6%.

It foilows that 2 = p'Pu/N < X (5 — 6%)/N. Assumption 4 completes the proof of
Theorem 13 by providing the inequality 5 <40

D.4 Theorem 14

The intuition is that the regression of stock returns on factors has a better fit if factors are

spanned by stock returns, all other things being equal.

K x 1 random vector ) = (7 )x=1,... k contains the residuals of the projection of factors onto

returns. © = Var([n)] isits K x K variance-covariance matrix. We have: ¥ = MXM'+©.
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f'. = Mr is the K x | random vector of returns on factor-mimicking portfolics. ¥, =

Var[f.] is the variance-covariance matrix of f.. We have: ¥, = MEXM' and ¥ = ¥, + O,

hence ¥ > W¥,, where the symbol > represents the ordering between symmetric matrices.

A useful implication is that ¥ W[ '® — ¥ > 0f, where Oy is the K x A aull matrix.

The coefficients of the regression of stock returns on f, are:

B. = Cov[r,f]Var[f,]™'
= Cov[F, f']Var[f,] ™
= Cov[f, | ¥
= Cov[f, f)E oy’
= BOY'

(D.3)
(D.4)
(D.5)
(D.6)
(D.7)

Let €2, denote the covariance matrix of the residuals of the projection of stock returns on

f.. We have: £ = B¥B' + Q = B,¥,B’ + {2, Therefore:

Q-Q, = B,9,B, - BUB
= (BUY¥]')¥,(BUY;') - BUB
= BYY;'¥B - BUB
= B(YY]'¥ - ¥)B

> Op.

(D.8)
(D.9)
(D.10)
(D.11)
(D.12)

Therefore the largest eigenvalue of §2 exceeds the largest eigenvalue of €2,. This completes

the proof of Theorem 14. O

D.S Theorem 15

This is a well-known result from matrix algebra. O
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D.6 Theorem 16

Decompose the covariance matrix of stock returns X into eigenvalues and eigenvectors: 3 =
UAU'. The diagonal elements of the N x N matrix A are the eigenvalues Ay, ..., Ay of &,
and the off-diagonal elements are equal to zero. The eigenvalues are sorted in descending
order. The column vectors of the N x N orthogonal matrix U are the eigenvectors
uy,...,uy of X.

Let Uy denote the N x K matrix containing the first X columns of U. The K factors
are the returns on the portfolios whose weights are the column vectors of Uy: f = L
The matrix of betas is: B = LU (U.ZU;) ™! = Uy.

The K x 1 random vector T = (7:)x=1,.. x contains estimates of risk premia based on

.....

T iid observations. The variance-covariance matrix of estimated risk premia is: Var[7| =
Var[f]/T = U,XU,/T. It is the diagonal matrix containing the top K eigenvalues of X
divided by T'.

The beta pricing equation with estimated risk premia is:

«
i =Y BikTh (D.13)
k=1

The expected sum of squared deviations from Equation (D.13) is:

o5 () | -

M=
[\12

K
(lh Zﬁzkﬂ + Y Var [Z szkJ (D.14)

B
(o) £

]

>

i
i

B Var [7] (D.15)

I
M=
M=
[\’]x

-
1l
~.
I
>
Il

N K K

= Y (/h > Bute | + Y Var[7i] (D.16)
i=1 k=1 k=1
N K K /\L

. (,L, S ) +3° % (D.17)
1=1 k=1

This completes the proof of Theorem 16. O
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Appendix E

Tables

| | Structured | Shrinkage | T-Statistic |

ml 20.3 10.9 7.01
B.1 20.3 10.6 7.20
B.2 16.0 9.6 8.33
B.3 13.8 9.6 6.37
B.4 11.5 9.3 4.94

Table E.1: Comparison of the Ex-Post Standard Deviations of Ex-Ante Minimum Variance
Portfolios.

Standard deviations are quoted in percents on an annual basis. The portfolios are obtained
using a structured estimator of the covariance matrix, or its associated shrinkage estimator.
The t-statistic tests the null hypothesis that a given structured estimator and its associated
shrinkage estimator yield ex-ante minimum variance portfolios with the same ex-post
variance of returns. This hypothesis is rejected in all five cases. Shrinkage helps portfolio
selection minimize variance.
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Structured | Shrinkage
With Without | T-Statistic
Hindsight | Hindsight

ml 11.8 10.9 1.88
B.1 11.8 10.6 3.80
B.2 11.0 9.6 4.38
B3 12.4 9.6 5.53
B.4 11.0 9.3 5.65

Table E.2: Comparison of the Ex-Post Standard Deviations of Minimum Variance Portfo-
lios.

Standard deviations are quoted in percents on an annual basis. The portfolios are obtained
using a structured estimator of the covariance matrix, or its associated shrinkage estimator.
For structured estimators, the minimum variance portfolio is chcsen ex-post among linear
combinations of three portfolios that span the ex-ante mean-variance efficient set, assuming
that returns are driven by beta and size only. For shrinkage estimators, the minimum
variance portfolio is chosen ex-ante, without the benefit of hindsight. This makes it harder
to help portfolio selection minimize variance. The t-statistic tests the null hypothesis that a
given structured estimator and its associated shrinkage estimator yield minimum variance
portfolios with the same ex-post variance of returns. All reject the null. The t-statistic
of 1.88 is significant at the 5% level against the one-sided alternative that shrinkage helps
minimize variance.
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Plain Excluding | Including | 1963-1992
Regression | January Size
Slope 2.33 -0.77 0.33 1.88
Standard Error (2.27) (2.31) (1.93) (3.15)
T-Statistic 1.03 -0.33 0.17 0.60

Table E.3: Predictive OLS Cross-Sectional Regression of Returns on Betas over 1936-1992.
Data come from the Center for Research in Security Prices (CRSP) database. Slope
estimates are quoted in percents on an annual basis. Returns are in excess of the riskfree
rate. The universe for a given year includes all common stocks traded on the NYSE and
(after 1963) AMEX, with all valid monthly returns over the past 10 years and valid market
capitalization. Returns are buy-and-hold, with annual rebalancing.
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Plain Excluding | Including | 1963-1992
Regression | January Size
Slope 3.51 3.08 2.57 3.08
Standard Error (1.84) (1.90) (1.78) (2.66)
T-Statistic 1.91 1.62 1.44 1.16

Table E.4: Predictive GLS Cross-Sectional Regression of Returns on Betas over 1936-1992.
Data come from the Center for Research in Security Prices (CRSP) database. Slope
estimates are quoted in percents on an annual basis. Returns are in excess of the riskfree
rate. The universe for a given year includes all common stocks traded on the NYSE and
(after 1963) AMEX, with all valid monthly returns over the past 10 years and valid market
capitalization. Returns are buy-and-hold, with annual rebalancing. The covariance matrix
estimate required for GLS is obtained from the asymptotic shirinkage estimator associated
with the structured estimator from Appendix B.4 (single index model).
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Plain Excluding | Including | 1963-1992
Regression | January Size
2.58 2.23 1.14 2.35
Section 1.3.2 (1.82) (1.88) (1.73) (2.56)
1.42 1.19 0.66 0.92
2.53 2.06 1.14 222
Appendix B.1 (1.81) (1.86) (1.71) (2.55)
1.40 1.11 0.66 0.87
3.61 3.44 2.65 3.01
Appendix B.2 (1.82) (1.88) (1.80) (2.63)
1.98 1.83 1.47 1.14
3.39 4.56 3.42 3.85
Appendix B.3 .77 (1.80) (1.71) (2.45)
1.92 2.53 2.00 1.57

Table E.5: Predictive GLS Cross-Sectional Regression of Returns on Betas over 1936-1992.
Data come from the Center for Research in Security Prices (CRSP) database. In each
cell, the first number is the slope estimates are quoted in percents on an annual basis; the
second number (in parenthesis) is the standard error on this number; and the third number
is the t-statistic obtained by dividing the above two numbers. Returns are in excess of the
riskfree rate. The universe for a given year includes all common stocks traded on the NYSE
and (after 1963) AMEX, with all valid monthly returns over the past 10 years and valid
market capitalization. Returns are buy-and-hold, with annual rebalancing. The covariance
matrix estimates required for GLS is obtained from the asymptotic shrinkage estimator
associated with the structured estimator from Section 1.3.2, and Appendices B.1, B.2 and

B.3 respectively.
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Appendix F

Figures

Figures start on the next page.
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Figure F-1: Sample vs. True Eigenvalues.

The solid lins represents the distribution of the eigenvalues of the sample covariance matrix.
Eigenvalues are sorted in descending order, then plotted against their relative rank, defined
as the ratio of the rank to the total number of eigenvalues V. When NV changes, the relative
rank remains between zero (largest eigenvalues) and one (smallest). We assume that the
true covariance matrix is the identity, i.e. true eigenvalues are equal to one. The distribution
of true eigenvalues is plotted as the dashed horizontal line. Distributions are obtained in the
limit as the number of observations 7" and the number of variables N both go to infinity, with
their ratio N/T converging to a finite positive limit c called the concentration. The four plots
correspond to different concentrations. The smallest eigenvalues of the sample covariance
matrix are severely biased downwards and the largest ones upwards. Bias increases in the
concentration.
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Geometric Interpretation of Theorem 5

l

M >

Figure F-2: Geometric Interpretation of Theorem 5.
2 is the true covariance matrix, m/ the scalar multiple of the identity closest to %, and T the
sample covariance matrix. 7, 1, and d denote the distances between these three matrices
(see Theorem 5). The errors on m/I and X are orthogonal by Theorem 3. 3 is the weighted
average of m/ and X with minimum mean squared error. It is the orthogonal projection of
3 onto the line between m/ and X.
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Bayesian Interpretation

Figure F-3: Bayesian Interpretation.
The left sphere has center X and radius 7;. The right sphere has center % and radius 7. The
distance between sphere centers is D. If all we knew was that the true covariance matrix X
lies on the left sphere, our best guess would be its center: the structured estimator Z. If all
we knew was that the true covariance matrix X lies on the right sphere, our best guess would
be its center: the sample covariance matrix 3. Putting together both pieces of information,
the true covariance matrix X must lie on the circle whAere the two spheres intersect, therefore

our best guess is its center: the improved estimator X.
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Effect of the Ratio of Variables to Observations
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Figure F-4: Effect of the Ratio of Number of Variables to Number of Observations on the
Percentage Relative Improvement in Average Loss (PRIAL).

Estimators and parameters are described in Section 1.4.1. Based on 1,000 Monte-Carlo
simulations. Zgy is not defined when N/T > 2 because the isotonic regression does not
converge.
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Effect of the Dispersion of Eigenvalues
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Figure F-5: Effect of the Dispersion of Eigenvalues on the Percentage Relative Improvement
in Average Loss (PRIAL).

Estimators and parameters are described in Section 1.4.1. Based on 1,000 Monte-Carlo
simulations.
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Effect of the Product of Variables by Observations
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Figure F-6: Effect of the Product of Variables by Observations on the Percentage Relative
Improvement in Average Loss (PRIAL).

Estimato.« and parameters are described in Section 1.4.1. Based on 1,000 Monte-Carlo
simulations.
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Weight on Structured Estimator

Figure F-7: Weights on Structured Estimators.
These weights are equal to (72 — )/ D?, see Theorem 10. Dots correspond to the structured
estimator £ = m/; circles, to the structured estimator of Appendix B.2; the dashed-dotted
line, to Appendix B.1; the dashed line, to Appendix B.3; and the solid line, to Appendix
B.4.
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Figure F-8: Ex-Post Characteristics of Ex-Ante Constrained Minimum Variance Portfolios.
Portfolios are constrained to have a specified beta between zero and one, and size zero. On
each graph, portfolios obtained from a structured estimator are plotted as a dashed line,
together with portfolios from the corresponding shrinkage estimator as a solid line. The title
of each graph gives the section where the structured estimator is described. In the interest
of space, the graph corresponding to Appendix B.1 is not shown. It closely resembles the
one corresponding to Section 1.3.2. The symbol x represents the CRSP value-weighted
index, for reference. Shrinkage improves the risk-return tradeoff, moderately for the graphs
on the left, and very slightly for the ones on the right.
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Domain where the Stieltjes Transform is Known
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Figure F-9: Domain where the Value of s, A i is Known from Equatlon (A.4).

The hatched domain represents a typical domain D, cf. Appendix A. D is the domain
where an estimate s, 5 of the Stieltjes transform of the true spectral c.d.f. H is known from
Equation (A.4). The value of s, ; is not shown in this figure. The Stieltjes inversion formula
ties the density h(z) of true eigenvalues to the imaginary part of s, ;(z + ie) for small
g > 0. Therefore we must extend Im(s, ;] from the hatched domain D towards the real
line. It means solving a Laplace equation with free boundary. This is an ill-posed problem.
The degree of ill-posedness is proportional to how far the hatched domain is from the real
line. In this simulation, ill-posedness is less severe around large eigenvalues (large ) than
small ones (small z). This figure is generated from 7' = 1000 observations on N = 100
variables. The true spectral c.d.f. is the standard lognormal distribution. It has many small,
clustered eigenvalues and a few large, more isolated ones. This is the same general shape
as the eigenvalues of the covariance matrix of the returns on all stocks traded in the stock
market.
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Top 100 Eigenvalues
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Figure F-10: Top 109 Eigenvalues of the Covariance Matrix of Stock Returns.
The covariance matrix of NYSE and AMEX stock returns is estimated from daily CRSP
data over 7/62-6/82. There are 5017 observations on 1019 stocks.
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Ratio ot Consecutive Eigenvalues
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Figure F-11: Ratio of Consecutive Eigenvalues of the Covariance Matrix of Stock Returns.
The ratio plots well above one for the first three eigenvalues only. These are the only
». . eigenvalues between which a gap is apparent.
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Ratio of Top Eigenvalue to Lesser Eigenvalues
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Figure F-12: Ratio of the Top Eigenvalue to Lesser Eigenvalues.
The further we look down the ranking of eigenvalues, the more negligible they become with
respect to the first one. In order to obtain negligible residuals, we must take a large number
K of factors. This contradicts the requirement of a large gap between factors and residuals.
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Accuracy of Beta Pricing
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Figure F-13: Beta Pricing Error Bound.
This graph plots the upper bound on mean squared deviations from beta pricing in Equation
(2.4).
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Accuracy vs. Parsimony
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Figure F-14: Accuracy vs. Parsimony.

The lower dots plot the square root of the first term on the right hand side of Equation (2.7).
It represents the deviation from beta pricing due to residual risk. It decreases in the number
of factors K. The middle dots plot the square root of the second term on the right hand
side of Equation (2.7). It represents the deviation from beta pricing due to risk premium
estimation error. It increases in the number of factors K. The upper dots plot the square
root of the sum of the two terms on the right hand side of Equation (2.7). It represents
the total deviation from beta pricing. It is minimized for K = 2 factors. Choosing K to
minimize the total deviation from beta pricing involves a trade-off between accuracy (with
residual risk) and parsimony (with risk premium estimation error). The solution of this
trade-off is the optimal number of factors in the §-APT. The optimal number of factors is
quite small. Even at the optimum, deviations from beta pricing are rather large.

130



Bibliography

[1] Petr Adamek. Approximate factor structure: a test for number of factors. Technical

report, MIT Sloan School of Management, 1994.

[2] Yakov Amihud, Bent Jesper Christensen, and Haim Mendelson. Further evidence on

the risk-return relationship. Technical report, New York University, 1992.

[3] V.S.Bawa, Stephen J. Brown, and R. W. Klein. Estimation Risk and Optimal Portfolio
Choice. Bell Laboratory Series. North Holland, New York, 1979. Studies in Bayesian

Econometrics.

[4] Fischer Black and Myron Scholes. The pricing of options and corporate liabilities.
Journal of Polititcal Economy, 81:637-654, May-June 1973.

[5] Stephen J. Brown. The number of factors in security returns. Journal of Finance,

44(5):1247-1262, December 1989.

[6] Gary Chamberlain and Michael Rothschild. Arbitrage, factor structure, and mean-
variance analysis on large asset markets. Econometrica, 51(5):1281-1304, September

1983.

[7] Nai-fu Chen, Richard Roll, and Stephen A. Ross. Economic forces and the stock
market. Journal of Business, 59:383—403, July 1986.

[8] Gregory Connor and Robert A. Korajczyk. The arbitrage pricing theory and multifactor
models of asset returns. In Finance Handbook, 1992. R. Jarrow, V. Maksimovic and

W. Ziemba, eds.

131



[9] Kent Daniel and Sheridan Titman. Evidence on the characteristics of cross-sectional
variation in stock returns. Graduate School of Business, University of Chicago, March

1995.

(10] D. K. Dey and C. Srinivasan. Estimation of a covariance matrix under Stein’s loss.

Annals of Statistics, 13(4):1581-1591, 198S.
[11] Eugene F. Fama. Foundations of Finance. Basic Books, New York, 1970.

[12] Eugene F. Fama and Kenneth R. French. The cross-section of expected stock returns.

Journal of Finance, 1992.

[13] Peter A. Frost and James E. Savarino. An empirical Bayes approach to portfolio
selection. Journal of Financial and Quantitative Analysis, 21(3):293-305, September
1986.

[14] L. R. Haff. Empirical Bayes estimation of the multivariate normal covariance matrix.

Annals of Sratistics, 8:586-597, 1980.

[15] L. R. Haff. Solutions of the Euler-Lagrange equations for certain multivariate normal

estimation problems. Unpublished manuscript, 1982.

[16] Gur Huberman. A simple approach to arbitrage pricing. Journal of Economic Theory,

28:183-191, 1982.

[17] J. D. Jobson and Bob Korkie. Estimation for Markowitz efficient portfolios. Journal
of the American Statistical Association, 75(371):544-554, September 1980. Applica-

tions Section.

[18] Shmuel Kandel and Robert F. Stambaugh. Portfolio inefficiency and the cross-section

of expected returns. Technical report, Wharton School, 1994.

[19] Bob Korkie. Corrections for trading frictions in multivariate returns. Journal of

Finance, 44(5):1421-1434, December 1989.

132



[20] Josef Lakonishok and Alan C. Shapiro. Systematic risk, total risk and size as de-

terminants of stock market returns. Journal of Banking and Finance, 10:115-132,

1986.

[21] A.Craig MacKinlay. Distinguishing among asset pricing theories: An ex ante analysis.

Wharton School, University of Pennsylvania, April 1993.
[22] Harry Markowitz. Portfolio selection. Journal of Finance, 7(1):77-91, March 1952.

[23] V. A. Marcenko and L. A. Pastur. Distribution of eigenvalues for some sets of random

matrices. Mathematics of the U.S.S.R. - Sbornik, 1(4):457-483, 1967.

[24] Richard O. Michaud. The Markowitz optimization enigma: is ‘optimized’ optimal?

Financial Analysts Journal, pages 31-42, January-February 1989.

[25] Robb J. Muirhead. Developments in eigenvalue estimation. Advances in Multivariate

Statistical Analysis, pages 277-288, 1987.

[26] Richard Roll. A critique of the asset pricing theory’s test; part I: on past and potential
testability of the theory. Journal of Financial Economics, 4:129~176, 1977.

[27] Stephen A. Ross. The arbitrage theory of capital asset pricing. Journal of Economic
Theory, 13:341-360, 1976.

[28] Stephen A. Ross. Mutual fund separation in financial theory — The separating
distributions. Journal of Economic Theory, 17:254-286, 1978.

[29] Jay Shanken. The arbitrage pricing theory: Is it testable? Journal of Finance, 1982.

{30] Jay Shanken. Multi-beta CAPM or equilibrium-APT?: A reply. Journal of Finance,
40(4):1185-1196, September 1985.

[31] Jay Shanken. Nonsynchronous data and the covariance-factor structure of returns.

Journal of Finance, 42(2):221-231, June 1987.

[32] Jay Shanken. The current state of the arbitrage pricing theory. Journal of Finance,

47(4):1569-1574, September 1992.

133



[33)

[34)

(35]

[36]

i37]

[38]

[39]

[40]

(41]

(42}

William F. Sharpe. A simplified model for portfolio analysis. Management Science,
January 1963.

Yo Sheena and Akimichi Takemura. Inadmissibility of non-order-preserving orthogo-
nally invariant estimators of the covariance matrix in the case of Stein’s loss. Journal

of Multivariate Analysis, 41:117-131, 1992.

Jack W. Silverstein. Strong convergence of the empirical distribution of eigenval-
ues of large dimensional random matrices. Journal of Multivariate Analysis, 1994.

Submitted.

Jack W. Silverstein and Sang-Il Choi. Analysis of the limiting spectral distribution of
large dimensional random matrices. SIAM Journal on Mathematical Analysis, 1994.

Submitted.

Jack W. Silverstein and Patrick L. Combettes. Signal detection via spectral theory
of large dimensional random matrices. IEEE Transactions on Signal Processing,

40:2100-2105, 1992.

Charles Stein. Estimation of a covariance matrix. Rietz Lecture, 39th Annual Meeting

IMS. Atlanta, GA., 1975.
Charles Stein. Series of lectures given at the University of Washington, Seattle, 1982.

Seha M. Tinic and Richard R. West. Risk and return: January vs. the rest of the yer.
Journal of Financial Economics, 13:561-574, December 1984.

Kenneth W. Wachter. Probability plotting points for principal components. In Pro-
ceedings of the Ninth Interface Symposium on Computer Science and Statistics, pages

299-308, 1976. Hoaglin and Welsch, eds.

Y. Q. Yin. Limiting spectral distribution for a class of random matrices. Journal of

Multivariate Analysis, 20:50-68, 1986.

134



Biographical Note

The author received a Bachelor’s Degree in General Engineering (Diplome d’Ingénieur)
from the Ecole Polytechnique, Paris, France, in 1990. He obtained a Master’s Degree in
Statistics and Economics (Diplome de Statisticien-Economiste) from the Ecole Nationale

de la Statistique et de I’ Administration Economique (ENSAE-SEA), Paris, France, in 1992.

135



